Description Usage Arguments Details Value References See Also Examples
This function calculates confidence intervals.
1 2 3 4 5 |
y |
the effect size estimates vector |
se |
the within studies standard errors vector |
v |
the within studies variance estimates vector |
alpha |
the alpha level of the prediction interval |
method |
the calculation method for the pretiction interval (default = "boot").
|
B |
the number of bootstrap samples |
parallel |
the number of threads used in parallel computing, or FALSE that means single threading |
seed |
set the value of random seed |
maxit1 |
the maximum number of iteration for the exact distribution function of Q |
eps |
the desired level of accuracy for the exact distribution function of Q |
lower |
the lower limit of random numbers of τ^2 |
upper |
the lower upper of random numbers of τ^2 |
maxit2 |
the maximum number of iteration for numerical inversions |
tol |
the desired level of accuracy for numerical inversions |
rnd |
a vector of random numbers from the exact distribution of τ^2 |
maxiter |
the maximum number of iteration for REML estimation |
Excellent reviews of heterogeneity variance estimation have been published (e.g., Veroniki, et al., 2018).
K
: the number of studies.
muhat
: the average treatment effect estimate \hat{μ}.
lci
, uci
: the lower and upper confidence limits \hat{μ}_l and \hat{μ}_u.
tau2h
: the estimate for τ^2.
i2h
: the estimate for I^2.
nuc
: degrees of freedom for the confidence interval.
vmuhat
: the variance estimate for \hat{μ}.
Veroniki, A. A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J. P. T., Knapp, G., and Salanti, J. (2016). Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis Res Syn Meth. In press. https://doi.org/10.1002/jrsm.1319.
Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140
Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791
Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019
Noma H. (2011) Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 30(28): 3304-3312. https://doi.org/10.1002/sim.4350
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | data(sbp, package = "pimeta")
set.seed(20161102)
# Nagashima-Noma-Furukawa confidence interval
pimeta::cima(sbp$y, sbp$sigmak, seed = 3141592)
# A Wald-type t-distribution confidence interval
# An approximate variance estimator & DerSimonian-Laird estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "DL")
# A Wald-type t-distribution confidence interval
# The Hartung variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "HK")
# A Wald-type t-distribution confidence interval
# The Sidik-Jonkman variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "SJ")
# A Wald-type t-distribution confidence interval
# The Kenward-Roger approach & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "KR")
# A Wald-type t-distribution confidence interval
# An approximate variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "APX")
# Profile likelihood confidence interval
# Maximum likelihood estimators of variance for the average effect & tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "PL")
# Profile likelihood confidence interval with a Bartlett-type correction
# Maximum likelihood estimators of variance for the average effect & tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "BC")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.