| PLAC | R Documentation |
Both a conditional approach Cox model and a pairwise likelihood augmented estimator are fitted and the corresponding results are returned in a list.
PLAC(
ltrc.formula,
ltrc.data,
id.var = "ID",
td.type = "none",
td.var = NULL,
t.jump = NULL,
init.val = NULL,
max.iter = 100,
print.result = TRUE,
...
)
ltrc.formula |
a formula of of the form |
ltrc.data |
a data.frame of the LTRC dataset including the responses, time-invariate covariates and the jump times for the time-depnencent covariate. |
id.var |
the name of the subject id in |
td.type |
the type of the time-dependent covariate. Either one of
|
td.var |
the name of the time-dependent covariate in the output. |
t.jump |
the name of the jump time variable in |
init.val |
a list of the initial values of the coefficients and the baseline hazard function for the PLAC estimator. |
max.iter |
the maximal number of iteration for the PLAC estimator |
print.result |
logical, if a brief summary of the regression coefficient estiamtes should be printed out. |
... |
other arguments |
ltrc.formula should have the same form as used in
coxph(); e.g., Surv(A, Y, D) ~ Z1 + Z2. where (A, Y,
D) are the truncation time, the survival time and the status indicator
((tstart, tstop, event) as in coxph).
td.type is used to determine which C++ function will be
invoked: either PLAC_TI (if td.type = "none"), PLAC_TD
(if td.type = "independent") or PLAC_TDR) (if td.type
%in% c("post-trunc", "pre-post-trunc")). For td.type =
"post-trunc", the pre-truncation values for the time-dependent covariate
will be set to be zero for all subjects.
a list of model fitting results for both conditional approach and the PLAC estimators.
Event.TimeOrdered distinct observed event times
bRegression coefficients estiamtes
se.bModel-based SEs of the regression coefficients estiamtes
H0Estimated cumulative baseline hazard function
se.H0Model-based SEs of the estimated cumulative baseline hazard function
sandwichThe sandwich estimator for (beta, lambda)
kThe number of iteration for used for the PLAC estimator
summA brief summary of the covariates effects
Wu, F., Kim, S., Qin, J., Saran, R., & Li, Y. (2018). A pairwise likelihood augmented Cox estimator for leftâtruncated data. Biometrics, 74(1), 100-108.
# When only time-invariant covariates are involved
dat1 = sim.ltrc(n = 40)$dat
PLAC(ltrc.formula = Surv(As, Ys, Ds) ~ Z1 + Z2,
ltrc.data = dat1, td.type = "none")
# When there is a time-dependent covariate that is independent of the truncation time
dat2 = sim.ltrc(n = 40, time.dep = TRUE,
distr.A = "binomial", p.A = 0.8, Cmax = 5)$dat
PLAC(ltrc.formula = Surv(As, Ys, Ds) ~ Z,
ltrc.data = dat2, td.type = "independent",
td.var = "Zv", t.jump = "zeta")
# When there is a time-dependent covariate that depends on the truncation time
dat3 = sim.ltrc(n = 40, time.dep = TRUE, Zv.depA = TRUE, Cmax = 5)$dat
PLAC(ltrc.formula = Surv(As, Ys, Ds) ~ Z,
ltrc.data = dat3, td.type = "post-trunc",
td.var = "Zv", t.jump = "zeta")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.