| vcovDC | R Documentation | 
High-level convenience wrapper for double-clustering robust covariance matrix estimators a la \insertCiteTHOM:11;textualplm and \insertCiteCAME:GELB:MILL:11;textualplm for panel models.
vcovDC(x, ...)
## S3 method for class 'plm'
vcovDC(x, type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"), ...)
| x | an object of class  | 
| ... | further arguments | 
| type | the weighting scheme used, one of  | 
vcovDC is a function for estimating a robust covariance matrix of
parameters for a panel model with errors clustering along both dimensions.
The function is a convenience wrapper simply summing a group- and a
time-clustered covariance matrix and subtracting a diagonal one a la
White.
Weighting schemes specified by type are analogous to those in
sandwich::vcovHC() in package sandwich and are
justified theoretically (although in the context of the standard
linear model) by \insertCiteMACK:WHIT:85;textualplm and
\insertCiteCRIB:04;textualplm \insertCite@see @ZEIL:04plm.
The main use of vcovDC (and the other variance-covariance estimators
provided in the package vcovHC, vcovBK, vcovNW, vcovSCC) is to pass
it to plm's own functions like summary, pwaldtest, and phtest or
together with testing functions from the lmtest and car packages. All of
these typically allow passing the vcov or vcov. parameter either as a
matrix or as a function, e.g., for Wald–type testing: argument vcov. to
coeftest(), argument vcov to waldtest() and other methods in the
lmtest package; and argument vcov. to
linearHypothesis() in the car package (see the
examples), see \insertCite@see also @ZEIL:04plm, 4.1-2, and examples below.
An object of class "matrix" containing the estimate of
the covariance matrix of coefficients.
Giovanni Millo
CAME:GELB:MILL:11plm
\insertRefCRIB:04plm
\insertRefMACK:WHIT:85plm
\insertRefTHOM:11plm
\insertRefZEIL:04plm
sandwich::vcovHC() from the sandwich
package for weighting schemes (type argument).
data("Produc", package="plm")
zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="pooling")
## as function input to plm's summary method (with and without additional arguments):
summary(zz, vcov = vcovDC)
summary(zz, vcov = function(x) vcovDC(x, type="HC1", maxlag=4))
## standard coefficient significance test
library(lmtest)
coeftest(zz)
## DC robust significance test, default
coeftest(zz, vcov.=vcovDC)
## idem with parameters, pass vcov as a function argument
coeftest(zz, vcov.=function(x) vcovDC(x, type="HC1", maxlag=4))
## joint restriction test
waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovDC)
## Not run: 
## test of hyp.: 2*log(pc)=log(emp)
library(car)
linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovDC)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.