Description Usage Arguments Details Value See Also Examples
Plot the estimated nonparametric variance function and provide the estimated function values.
1 |
object |
a model fitted using the model fitting function |
heteroX |
at most two variables conditioning the heteroskedasticity of the regression error variance. If there are two variables, they can be passed either as a 2-element list or a 2-column matrix. |
data |
an optional data frame containing the variables in the model. If relevant variables are not found in |
var.fun.bws |
the bandwidth selection method for the kernel regression estimation of the variance function. A rule-of-thumb type method “ROT” (default), “h.select” (cross validation using binning technique) or “hcv” (ordinary cross validation are available. |
var.fun.poly.index |
the degree of polynomial of the kernel regression to estimate the nonparametric variance function: either 1 for local linear or 0 (default) for local constant. |
... |
optional arguments relevant to estimation and plotting with |
The variance function plotted is an unconditional estimate, i.e. the sum of the estimated variances of the random effects and the regression error. As opposed to wplmm
, var.plot
does not trim negative estimates of the variance function values. var.fun.values
returned from var.plot
are also untrimmed estimates.
“ROT” selects the bandwidths for heteroskedasticity conditioning variable w by sd(w)N^{-1/(4+q)} where q is th the number of the conditioning variables (1 or 2) and N is the sample size. Some of the relevant optional arguments include display
, nbins
and ngrid
. See sm.options.
The following values are returned invisibly (they are not printed, but can be assigned).
var.fun.values |
the estimated untrimmed conditional variance function values at the data points. |
var.comp |
the estimated variance of the random effects. |
h.var.fun |
the bandwidths used to estimate the nonparametric variance function. |
wplmm
, sm.regression
, sm.options
1 2 3 4 5 |
Loading required package: sm
Package 'sm', version 2.2-5.6: type help(sm) for summary information
Loading required package: Formula
Loading required package: nlme
Warning message:
no DISPLAY variable so Tk is not available
[1] 4.206062 1.601789 10.439550 1.872813 9.947393 3.712525 10.686313
[8] 9.623119 8.050397 4.804372 8.822719 1.387454 5.567495 9.774135
[15] 4.483276 2.150387 3.212202 9.107681 8.270726 5.408606 10.821706
[22] 10.222492 4.586617 10.349725 10.879550 6.668273 9.876211 2.737450
[29] 9.190887 10.150601 6.342179 9.779645 9.693576 7.212318 5.395036
[36] 3.076369 1.327852 2.992569 7.473657 8.524540 2.207123 1.314327
[43] 10.890439 6.005769 9.159829 4.208400 2.572197 1.540200 1.380207
[50] 6.619228 10.907077 9.156207 1.293786 10.817193 8.987337 4.792651
[57] 6.987744 1.484486 5.867218 9.994196 9.068292 9.570048 4.262180
[64] 9.593505 9.129290 9.322476 10.706384 4.521482 8.295656 3.630731
[71] 3.059014 2.857372 10.777942 3.945787 7.192296 2.898387 9.660517
[78] 9.476029 2.545494 1.250231 1.807945 10.694349 4.753623 8.928144
[85] 1.535563 9.799492 4.428387 8.675515 7.236708 5.936491 8.906938
[92] 3.450403 9.119939 9.035360 3.620870 8.944618 1.956330 9.526530
[99] 9.400235 1.358353 10.360492 6.876318 10.246957 10.633234 9.579681
[106] 2.501499 1.713973 1.486946 10.529410 10.793118 10.678601 9.629694
[113] 2.629420 10.875368 1.726598 9.901853 10.550654 3.154919 9.721469
[120] 5.373840 9.493577 8.154930 8.180369 9.172276 3.399753 10.885643
[127] 7.886250 10.712434 9.382095 6.960221 1.999619 7.561350 9.220744
[134] 4.376950 6.265040 1.586756 1.307797 9.708979 5.337967 2.623719
[141] 1.267494 9.600842 10.607500 8.251740 2.033105 10.386884 5.127919
[148] 9.957543 10.794212 6.979553 1.250185 10.409870 5.053240 7.425277
[155] 10.605114 9.066206 3.375180 3.852691 1.394075 8.785449 3.559555
[162] 1.636281 1.314422 2.970430 10.422908 9.099096 6.731255 2.021687
[169] 9.327532 2.743622 9.152000 10.304196 8.552770 9.167199 2.975144
[176] 10.322147 8.906540 9.996319 10.625708 7.188537 6.529425 8.776350
[183] 8.285489 2.539179 2.672429 7.116296 8.331169 1.589836 10.453236
[190] 2.743791 6.175750 1.691911 8.447634 9.867637 6.439920 9.084631
[197] 2.812050 10.907519 4.506216 10.218021 7.327857 1.293517 7.106298
[204] 10.845818 2.955410 6.441723 10.029927 9.867434 3.124455 10.897920
[211] 1.252924 6.772033 10.282627 4.220206 5.367987 10.734610 10.723580
[218] 2.345941 7.619022 10.839371 10.219058 10.733408 1.507559 7.898591
[225] 5.723466 7.068246 10.386514 2.266728 1.361667 2.682953 1.430038
[232] 2.353650 9.043576 3.533843 10.444033 4.000435 3.104072 9.259196
[239] 6.652350 10.146915 3.807039 10.117985 1.218659 2.045552 3.052168
[246] 2.294402 5.775296 9.547400 1.483034 9.793416 2.983530 2.834617
[253] 4.052006 2.390637 9.702057 10.226263 7.709585 9.369060 3.223573
[260] 5.773394 6.461906 10.494288 9.603184 8.228690 8.597717 2.115171
[267] 10.607181 4.274019 1.332135 5.308855 2.345832 9.883095 2.053754
[274] 10.462344 8.968981 7.926121 8.564053 2.825560 10.908187 4.584451
[281] 3.159676 8.347697 9.159289 6.330944 5.620203 1.402405 1.246637
[288] 7.268689 2.272894 3.143111 8.527627 4.265779 9.774804 6.270705
[295] 4.367885 6.146047 1.292345 8.028402 9.429649 1.740125 9.910978
[302] 3.026252 2.462517 10.761450 2.060114 10.498866 7.664568 9.956574
[309] 2.739556 9.619540 4.661221 9.640182 7.681885 1.677055 9.580766
[316] 8.814606 9.067344 10.902841 3.158919 9.308578 2.068575 9.318312
[323] 2.822284 4.002504 5.525784 10.474016 10.621132 6.705658 5.187370
[330] 10.204499 10.273258 9.580978 3.657481 3.126650 3.449408 10.893134
[337] 10.905961 3.711492 4.599649 9.135737 10.273047 4.924513 9.258470
[344] 9.442321 9.891544 10.597778 7.291975 3.679189 6.309492 10.585604
[351] 10.211093 9.680612 2.174524 3.983125 9.707643 9.173439 8.482426
[358] 8.427354 2.728221 6.685154 9.654817 3.034800 10.845471
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.