Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE,
echo = TRUE
)
options(repos = c(CRAN = "https://cloud.r-project.org"))
## ----setup--------------------------------------------------------------------
# if (!requireNamespace("EMCluster", quietly = TRUE)) {
# install.packages("EMCluster")
# }
#
# if (!requireNamespace("flexmix", quietly = TRUE)) {
# install.packages("flexmix")
# }
#
# if (!requireNamespace("mixtools", quietly = TRUE)) {
# install.packages("mixtools")
# }
#
# if (!requireNamespace("ggplot2", quietly = TRUE)) {
# install.packages("ggplot2")
# }
#
# if (!requireNamespace("plotmm", quietly = TRUE)) {
# install.packages("plotmm")
# }
#
# library(plotmm)
## -----------------------------------------------------------------------------
# library(mixtools)
# library(ggplot2)
#
# set.seed(576)
#
# mixmdl <- normalmixEM(iris$Petal.Length, k = 2)
#
# # visualize
# plot_mm(mixmdl, 2) +
# labs(title = "Univariate Gaussian Mixture Model",
# subtitle = "Mixtools Object")
## -----------------------------------------------------------------------------
# library(mixtools)
# library(ggplot2)
#
# # set up the data (replication of mixtools examples for comparability)
# data(NOdata)
# attach(NOdata)
#
# set.seed(100)
#
# out <- regmixEM(Equivalence, NO, verb = TRUE, epsilon = 1e-04)
#
# df <- data.frame(out$beta)
#
# # visualize
# plot_mm(out) +
# labs(title = "Mixture of Regressions",
# subtitle = "Mixtools Object")
## -----------------------------------------------------------------------------
# library(EMCluster)
# library(patchwork)
#
# set.seed(1234)
#
# x <- da1$da
#
# out <- init.EM(x, nclass = 10, method = "em.EM")
#
# plot_mm(out, data = x) +
# plot_annotation(title = "Bivariate Gaussian Mixture Model",
# subtitle = "EMCluster Object")
## -----------------------------------------------------------------------------
# library(mixtools)
#
# mixmdl <- normalmixEM(faithful$waiting, k = 2)
#
# plot_cut_point(mixmdl, plot = TRUE, color = "amerika") # produces plot
#
# plot_cut_point(mixmdl, plot = FALSE) # gives the cut point value, not the plot
## -----------------------------------------------------------------------------
# library(mixtools)
# library(magrittr)
# library(ggplot2)
#
# # Fit a univariate mixture model via mixtools
# set.seed(576)
#
# mixmdl <- normalmixEM(faithful$waiting, k = 2)
#
# # Customize a plot with `plot_mix_comps_normal()`
# data.frame(x = mixmdl$x) %>%
# ggplot() +
# geom_histogram(aes(x, ..density..), binwidth = 1, colour = "black",
# fill = "white") +
# stat_function(geom = "line", fun = plot_mix_comps_normal, # here is the function
# args = list(mixmdl$mu[1], mixmdl$sigma[1], lam = mixmdl$lambda[1]),
# colour = "red", lwd = 1.5) +
# stat_function(geom = "line", fun = plot_mix_comps_normal, # here again as k = 2
# args = list(mixmdl$mu[2], mixmdl$sigma[2], lam = mixmdl$lambda[2]),
# colour = "blue", lwd = 1.5) +
# ylab("Density")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.