conditional_means: Estimate mean rewards mu for each treatment a

Description Usage Arguments Value Methods (by class) Examples

View source: R/scores.R

Description

μ_a = m(x) + (1-e_a(x))τ_a(x)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## S3 method for class 'causal_forest'
conditional_means(object, ...)

## S3 method for class 'instrumental_forest'
conditional_means(object, ...)

## S3 method for class 'multi_arm_causal_forest'
conditional_means(object, outcome = 1, ...)

conditional_means(object, ...)

Arguments

object

An appropriate causal forest type object

...

Additional arguments

outcome

Only used with multi arm causal forets. In the event the forest is trained with multiple outcomes Y, a column number/name specifying the outcome of interest. Default is 1.

Value

A matrix of estimated mean rewards

Methods (by class)

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# Compute conditional means for a multi-arm causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
forest <- grf::multi_arm_causal_forest(X, Y, W)
mu.hats <- conditional_means(forest)
head(mu.hats)

# Compute conditional means for a causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
mu.hats <- conditional_means(c.forest)

policytree documentation built on July 7, 2021, 9:06 a.m.