Description Usage Arguments Methods (by generic) Slots Examples
A class to represent a matrix of polynomials
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ## S4 method for signature 'polyMatrix,numeric'
x[[i]]
## S4 method for signature 'polyMatrix'
det(x)
## S4 method for signature 'polyMatrix'
nrow(x)
## S4 method for signature 'polynomial'
nrow(x)
## S4 method for signature 'polyMatrix'
ncol(x)
## S4 method for signature 'polynomial'
ncol(x)
## S4 method for signature 'polyMatrix'
dim(x)
## S4 method for signature 'polyMatrix'
predict(object, newdata)
## S4 method for signature 'polyMatrix'
round(x, digits = 0)
## S4 method for signature 'polyMatrix'
show(object)
## S4 method for signature 'polyMatrix,polyMatrix'
e1 == e2
## S4 method for signature 'polyMatrix,polynomial'
e1 == e2
## S4 method for signature 'polyMatrix,matrix'
e1 == e2
## S4 method for signature 'polyMatrix,numeric'
e1 == e2
## S4 method for signature 'ANY,polyMatrix'
e1 == e2
## S4 method for signature 'polyMatrix,ANY'
e1 != e2
## S4 method for signature 'ANY,polyMatrix'
e1 != e2
|
x |
a matrix object |
i |
the degree of the matrix of coefficient to be extracted |
object |
an R object |
newdata |
the value to be evaluated |
digits |
an integer indicating the number of decimal places (round) or significant digits (signif) to be used |
e1 |
an left operand |
e2 |
an right operand |
[[
: get coefficient matrix by degree
det
: determinant of a polynomial matrix
nrow
: the number of rows of a polynomial matrix
nrow
: a polynomial has only one row
ncol
: the number of columns of a polynomial matrix
ncol
: a polynomial has only one column
dim
: the dimension of a polynomial matrix
predict
: the value of a polynomial matrix in a point
round
: rounding of a polynomial matrix is rounding of polynomial coefficients
show
: prints out a text representation of a polynomial matrix
==
: equal operator for two polinomial matrices, result is a boolean matrix
==
: equal operator for polinomail matrix and polinomail, result is a matrix
==
: equal operator for polinomial and numerical matrices
==
: equal operator for polinomial matrix and number, result is a matrix
==
: equal operator for aby object and polinomial matrix
!=
: not equal operator
!=
: not equal operator
coef
A matrix of coefficients which are joined into one matrix from lower degree to higher
ncol
The actual number of columns in the polynomial matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # create a new polynomial matrix by parsing strings
pm <- parse.polyMatrix(
"x; 1 + x^2; 3 x - x^2",
"1; 1 + x^3; - x + x^3"
)
# get coefficient matrix for degree 0
pm[[0]]
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2 ] 1 1 0
# get coefficient matrix for degree 1
pm[[1]]
## [,1] [,2] [,3]
## [1,] 1 0 3
## [2 ] 0 0 -1
# dimensions
nrow(pm) ## 2
ncol(pm) ## 3
dim(pm) ## [1] 2 3
# round
round(parse.polyMatrix(
" 1.0001 - x, 1 - x^2, 1 + 2.0003*x + x^2",
"0.0001 + x - x^2, 1 + x + 0.0001 x^2, 1 - 2*x + x^2"
))
## [,1] [,2] [,3]
## [1,] 1 - x 1 - x^2 1 + 2x + x^2
## [2,] x - x^2 1 + x 1 - 2x + x^2
# print out a polynomial matrix
show(parse.polyMatrix(
" 1.0001 - x, 1 - x^2, 1 + 2.0003*x + x^2",
"0.0001 + x - x^2, 1 + x, 1 - 2*x + x^2",
" 12.3 x^3, 2 + 3.5 x + x^4, -0.7 + 1.6e-3 x^3"
))
## [,1] [,2] [,3]
## [1,] 1.0001 - x 1 - x^2 1 + 2.0003x + x^2
## [2,] 1e-04 + x - x^2 1 + x 1 - 2x + x^2
## [3,] 12.3x^3 2 + 3.5x + x^4 -0.7 + 0.0016x^3
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.