kde_polysph | R Documentation |
Computes the kernel density estimator for data on the
polysphere \mathcal{S}^{d_1} \times \cdots \times \mathcal{S}^{d_r}
.
Given a sample \boldsymbol{X}_1,\ldots,\boldsymbol{X}_n
, this
estimator is
\hat{f}(\boldsymbol{x};\boldsymbol{h})=\sum_{i=1}^n
L_{\boldsymbol{h}}(\boldsymbol{x},\boldsymbol{X}_i)
for a kernel L
and a vector of bandwidths \boldsymbol{h}
.
kde_polysph(x, X, d, h, weights = as.numeric(c()), log = FALSE,
wrt_unif = FALSE, normalized = TRUE, intrinsic = FALSE,
norm_x = FALSE, norm_X = FALSE, kernel = 1L, kernel_type = 1L,
k = 10)
x |
a matrix of size |
X |
a matrix of size |
d |
vector of size |
h |
vector of size |
weights |
weights for each observation. If provided, a vector of size
|
log |
compute the logarithm of the density? Defaults to |
wrt_unif |
flag to return a density with respect to the uniform
measure. If |
normalized |
flag to compute the normalizing constant of the kernel
and include it in the kernel density estimator. Defaults to |
intrinsic |
use the intrinsic distance, instead of the
extrinsic-chordal distance, in the kernel? Defaults to |
norm_x , norm_X |
ensure a normalization of the data? Defaults to
|
kernel |
kernel employed: |
kernel_type |
type of kernel employed: |
k |
softplus kernel parameter. Defaults to |
A column vector of size c(nx, 1)
with the evaluation of
kernel density estimator.
# Simple check on S^1 x S^2
n <- 1e3
d <- c(1, 2)
mu <- c(0, 1, 0, 0, 1)
kappa <- c(5, 5)
h <- c(0.2, 0.2)
X <- r_vmf_polysph(n = n, d = d, mu = mu, kappa = kappa)
kde_polysph(x = rbind(mu), X = X, d = d, h = h)
d_vmf_polysph(x = rbind(mu), d = d, mu = mu, kappa = kappa)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.