proj_grad_kde_polysph | R Documentation |
Computes the projected gradient
\mathsf{D}_{(p-1)}\hat{f}(\boldsymbol{x};\boldsymbol{h})
of the
kernel density estimator \hat{f}(\boldsymbol{x};\boldsymbol{h})
on the
polysphere \mathcal{S}^{d_1} \times \cdots \times \mathcal{S}^{d_r}
,
where p=\sum_{j=1}^r d_j+r
is the dimension of the ambient space.
proj_grad_kde_polysph(x, X, d, h, weights = as.numeric(c()),
wrt_unif = FALSE, normalized = TRUE, norm_x = FALSE, norm_X = FALSE,
kernel = 1L, kernel_type = 1L, k = 10, proj_alt = TRUE,
fix_u1 = TRUE, sparse = FALSE)
x |
a matrix of size |
X |
a matrix of size |
d |
vector of size |
h |
vector of size |
weights |
weights for each observation. If provided, a vector of size
|
wrt_unif |
flag to return a density with respect to the uniform
measure. If |
normalized |
flag to compute the normalizing constant of the kernel
and include it in the kernel density estimator. Defaults to |
norm_x , norm_X |
ensure a normalization of the data? Defaults to
|
kernel |
kernel employed: |
kernel_type |
type of kernel employed: |
k |
softplus kernel parameter. Defaults to |
proj_alt |
alternative projection. Defaults to |
fix_u1 |
ensure the |
sparse |
use a sparse eigendecomposition of the Hessian? Defaults to
|
A list with the following components:
eta |
a matrix of size |
u1 |
a matrix of size |
lamb_norm |
a matrix of size |
# Simple check on (S^1)^2
n <- 3
d <- c(1, 1)
mu <- c(0, 1, 0, 1)
kappa <- c(5, 5)
h <- c(0.2, 0.2)
X <- r_vmf_polysph(n = n, d = d, mu = mu, kappa = kappa)
proj_grad_kde_polysph(x = X, X = X, d = d, h = h)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.