Nothing
#' Cliff Walking Gridworld MDP
#'
#' The cliff walking gridworld MDP example from Chapter 6 of the textbook
#' "Reinforcement Learning: An Introduction."
#'
#' The cliff walking gridworld has the following layout:
#'
#' 
#'
#' The gridworld is represented as a 4 x 12 matrix of states.
#' The states are labeled with their x and y coordinates.
#' The start state is in the bottom left corner.
#' Each action has a reward of -1, falling off the cliff has a reward of -100 and
#' returns the agent back to the start. The episode is finished once the agent
#' reaches the absorbing goal state in the bottom right corner.
#' No discounting is used (i.e., \eqn{\gamma = 1}).
#'
#' @docType data
#' @name Cliff_walking
#' @aliases Cliff_walking cliff_walking
#' @format An object of class [MDP].
#' @keywords datasets
#' @family MDP_examples
#' @family gridworld
#' @references
#' Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction
#' Second Edition, MIT Press, Cambridge, MA.
#' @examples
#' data(Cliff_walking)
#' Cliff_walking
#'
#' gridworld_matrix(Cliff_walking)
#' gridworld_matrix(Cliff_walking, what = "labels")
#'
#' # The Goal is an absorbing state
#' which(absorbing_states(Cliff_walking))
#'
#' # visualize the transition graph
#' gridworld_plot_transition_graph(Cliff_walking)
#'
#' # solve using different methods
#' sol <- solve_MDP(Cliff_walking)
#' sol
#' policy(sol)
#' gridworld_plot_policy(sol)
#'
#' sol <- solve_MDP(Cliff_walking, method = "q_learning", N = 100)
#' sol
#' policy(sol)
#' gridworld_plot_policy(sol)
#'
#' sol <- solve_MDP(Cliff_walking, method = "sarsa", N = 100)
#' sol
#' policy(sol)
#' gridworld_plot_policy(sol)
#'
#' sol <- solve_MDP(Cliff_walking, method = "expected_sarsa", N = 100, alpha = 1)
#' policy(sol)
#' gridworld_plot_policy(sol)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.