Nothing
#' Windy Gridworld MDP
#'
#' The Windy gridworld MDP example from Chapter 6 of the textbook
#' "Reinforcement Learning: An Introduction."
#'
#' The gridworld has the following layout:
#'
#' 
#'
#' The grid world is represented as a 7 x 10 matrix of states.
#' In the middle region the next states are shifted upward by wind
#' (the strength in number of squares is given below each column).
#' For example, if the agent is one cell to the right of the goal,
#' then the action left takes the agent to the cell just above the goal.
#'
#' No discounting is used (i.e., \eqn{\gamma = 1}).
#'
#' @docType data
#' @name Windy_gridworld
#' @aliases windy_gridworld
#' @format An object of class [MDP].
#' @keywords datasets
#' @family MDP_examples
#' @family gridworld
#' @references
#' Richard S. Sutton and Andrew G. Barto (2018). Reinforcement Learning: An Introduction
#' Second Edition, MIT Press, Cambridge, MA.
#' @examples
#' data(Windy_gridworld)
#' Windy_gridworld
#'
#' gridworld_matrix(Windy_gridworld)
#' gridworld_matrix(Windy_gridworld, what = "labels")
#'
#' # The Goal is an absorbing state
#' which(absorbing_states(Windy_gridworld))
#'
#' # visualize the transition graph
#' gridworld_plot_transition_graph(Windy_gridworld,
#' vertex.size = 10, vertex.label = NA)
#'
#' # solve using value iteration
#' sol <- solve_MDP(Windy_gridworld)
#' sol
#' policy(sol)
#' gridworld_plot_policy(sol)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.