Nothing
#' Calculate a ranking probabilities matrix from MCMC samples
#'
#' @param x a matrix or data.frame of MCMC samples, where rows are MCMC samples and columns are relative effects (relative to anchor) for treatments.
#' must have column names that are the name of each treatment.
#' @param small.values A character string specifying whether small
#' outcome values indicate a beneficial (\code{"desirable"}) or
#' harmful (\code{"undesirable"}) effect, can be abbreviated.
#' @param trts character vector of treatment names, optional if samples has column names
#'
#' @return A matrix of ranking probabilities where rows are treatments and columns are ranks
rankMCMC <- function(x, small.values = "desirable", trts = NULL) {
small.values <- setsv(small.values)
n <- ncol(x)
n.seq <- seq_len(n)
# name check
if (length(trts) != n) {
if (is.null(colnames(x))) {
trts <- paste0("trt", n.seq)
colnames(x) <- trts
}
#
trts <- colnames(x)
}
else
colnames(x) <- trts
# Ranks for every row of the matrix:
direction <- ifelse(small.values == "undesirable", -1, 1)
ranks <- t(apply(x * direction, 1, rank))
colnames(ranks) <- colnames(x)
# rows of rank_mat are treatments, columns are ranks
rank_mat <- matrix(nrow = n, ncol = n)
#
for (i in n.seq)
for (j in n.seq)
rank_mat[i, j] <- mean(ranks[, i] == j)
#
rownames(rank_mat) <- colnames(x)
colnames(rank_mat) <- seq_len(nrow(rank_mat))
rank_mat
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.