Nothing
## ----step2--------------------------------------------------------------------
Phi <- matrix(c(.4, .1, .2, .3), ncol = 2, byrow = T)
# The .2 refers to our standardized cross-lagged effect of interest
within_cor <- 0.3
ICC <- 0.5
RI_cor <- 0.3
## ----setup, message=FALSE-----------------------------------------------------
library(powRICLPM)
## ----step2-check--------------------------------------------------------------
# Check `Phi` argument
check_Phi(Phi)
## ----analysis, eval = F-------------------------------------------------------
# # Set number of replications
# n_reps <- 100
#
# output <- powRICLPM(
# target_power = 0.8,
# search_lower = 500,
# search_upper = 1000,
# search_step = 50,
# time_points = c(3, 4),
# ICC = ICC,
# RI_cor = RI_cor,
# Phi = Phi,
# within_cor = 0.3,
# reps = n_reps
# )
## ----future-setup, eval = F---------------------------------------------------
# # Load `future` and `progressr` packages
# library(future)
# library(progressr)
#
# # Check how many cores are available
# future::availableCores()
#
# # Plan powRICLPM analysis to run on 1 core less than number of available cores
# plan(multisession, workers = 7) # For the case of 8 available cores
#
# # Run the powRICLPM analysis
# with_progress({ # Subscribe to progress updates
# output <- powRICLPM(
# target_power = 0.8,
# search_lower = 500,
# search_upper = 1000,
# search_step = 50,
# time_points = c(3, 4),
# ICC = ICC,
# RI_cor = RI_cor,
# Phi = Phi,
# within_cor = 0.3,
# reps = n_reps
# )
# })
#
# # Revert back to sequential execution of code
# plan(sequential)
## ----summary, eval = F--------------------------------------------------------
# # Summary of study design
# summary(output)
#
# # Summary of results for a specific parameter, across simulation conditions
# summary(output, parameter = "wB2~wA1")
#
# # Summary of all parameter for a specific simulation condition
# summary(output, sample_size = 500, time_points = 4, ICC = 0.5, reliability = 1)
#
## ----give, eval = F-----------------------------------------------------------
# # Extract experimental conditions
# give(output, what = "conditions")
#
# # Extract estimation problems
# give(output, what = "estimation_problems")
#
# # Extract results for cross-lagged effect "wB2~wA1"
# give(output, what = "results", parameter = "wB2~wA1")
#
# # Extract parameter names
# give(output, what = "names")
## ----plot, eval = FALSE-------------------------------------------------------
# # Create basic plot of powRICLPM object
# p <- plot(output, parameter = "wB2~wA1")
# p
#
# # Adjust plot aesthetics
# p2 <- p +
# ggplot2::labs(
# title = "Power analysis for RI-CLPM",
# caption = paste0("Based on ", n_reps, " replications.")
# ) +
# ggplot2::scale_color_discrete("Time points") +
# ggplot2::guides(
# color = ggplot2::guide_legend(title = "Time points", nrow = 1),
# shape = ggplot2::guide_legend(title = "Reliability", nrow = 1),
# fill = "none"
# ) +
# ggplot2::scale_x_continuous(
# name = "Sample size",
# breaks = seq(500, 1000, 50),
# guide = ggplot2::guide_axis(n.dodge = 2)
# )
# p2
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.