Nothing
#' @include WeightingFunctions.R
# ..get_default_weighting_parameters (none) ------------------------------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodNone"),
function(object, transformer, estimator, ...) {
# No weights required.
return(NULL)
}
)
# ..get_default_weighting_parameters (emp prob, step, general) -----------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodEmpiricalProbabilityStep"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.90)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "empirical_probability-step" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (emp prob, triangle, general) -------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodEmpiricalProbabilityTriangle"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.85, "k2" = 0.95)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "empirical_probability-triangle" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (emp prob, cosine, general) ---------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodEmpiricalProbabilityCosine"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.85, "k2" = 0.95)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "empirical_probability-cosine" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (transformed, step, general) --------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodTransformedStep"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 1.96)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "transformed-step" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (transformed, triangle, general) ----------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodTransformedTriangle"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.50, "k2" = 8.00)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "transformed-triangle" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (transformed, cosine, general) ------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodTransformedCosine"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.50, "k2" = 8.00)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "transformed-cosine" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (residual, step, general) -----------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodResidualStep"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 2.00)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "residual-step" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (residual, triangle, general) -------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodResidualTriangle"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.50, "k2" = 8.00)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "residual-triangle" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
# ..get_default_weighting_parameters (residual, cosine, general) ---------------
setMethod(
"..get_default_weighting_parameters",
signature(object = "weightingMethodResidualCosine"),
function(object, transformer, estimator, ...) {
# Prevent NOTE due to non-standard evaluation.
name <- method <- estimation_method <- NULL
default_values <- list("k1" = 0.50, "k2" = 8.00)
# Check for known values that where obtained for the manuscript.
if (..requires_shift_scale_optimisation(transformer)) {
optimal_values <- two_sided_function_parameters[
name == "residual-cosine" & method == transformer@method & estimation_method == estimator@method
]
if (nrow(optimal_values) == 1) {
default_values$k1 <- optimal_values$k1
default_values$k2 <- optimal_values$k2
}
}
return(default_values)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.