PLSc | R Documentation |
Performs Partial Least Squares classification
PLSc(X, Y, A, scaling = 'auto-scaling', post.transformation = TRUE,
eps = 0.01, Y.prob = FALSE, transformation = 'ilr')
X |
Data matrix where columns represent the |
Y |
Data matrix where columns represent the two classes and
rows the |
A |
Number of score components |
scaling |
Type of scaling, one of
|
post.transformation |
Boolean value. |
eps |
Default 0.01. |
Y.prob |
Boolean value. Default |
transformation |
Transformation used to map |
List with the following objects:
Matrix of weights
Matrix of X
loading
Matrix of Y
loading
Matrix of X
data (predictor variables)
Matrix of Y
data (dependent variable)
Matrix of scores
Fitted Y
matrix
Matrix regression coefficients
Number of orthogonal components if post.transformation=TRUE
is applied.
Angela Andreella
Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374.
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.