Nothing
#' Simulated data under high-dimensional linear, binary, group LASSO and quantile varying coefficient models
#'
#' @docType data
#' @keywords datasets
#' @name data
#' @format
#' The data_linear object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable \eqn{y}.
#' The data_binary object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable \eqn{y}.
#' The data_group object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable \eqn{y}.
#' The data_varying object consists of five components: g, y, u, e and coeff. coeff contains the true values of parameters used for generating the response variable \eqn{y}.
#'
#'
#'
#'
#' @details
#'
#' \strong{Generating Y using a sparse linear (quantile) regression model}
#'
#' The true data generating model under sparse linear regression:
#' \deqn{Y_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\epsilon_i,}
#' where \eqn{\epsilon_i\sim N(0,1)}, \eqn{\beta_{0}=0}, \eqn{\beta_{1}=1 }, \eqn{\beta_{2}=1.5} and \eqn{\beta_3=2}.
#'
#' \strong{Generating Y using a sparse binary (quantile) regression model}
#'
#' The true data generating model under sparse linear regression:
#' \deqn{\tilde{Y}_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\epsilon_i,}
#' where \eqn{\epsilon_i\sim N(0,1)}, \eqn{\beta_{0}=0}, \eqn{\beta_{1}=0.22 }, \eqn{\beta_{2}=0.18} and \eqn{\beta_3=0.14}.
#'
#' \eqn{Y_i=1} if \eqn{\tilde{Y}_i>0} and \eqn{Y_i=0} otherwise.
#'
#' \strong{Generating Y using a high-dimensional group LASSO model}
#'
#' The true data generating model under a group LASSO model:
#' \deqn{Y_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\beta_{7}X_{i7}+\beta_{8}X_{i8}+\beta_{9}X_{i9}+\epsilon_i,}
#' where \eqn{\epsilon_i\sim N(0,1)}, \eqn{\beta_{0}=0}, \eqn{\beta_{1}=0.6}, \eqn{\beta_{2}=0.7},\eqn{\beta_{3}=0.8},\eqn{\beta_{7}=0.65}, \eqn{\beta_{8}=0.75} and \eqn{\beta_{9}=0.85}.
#'
#' \strong{Generating Y using a (quantile) varying coefficient model}
#'
#' Data generation under sparse (quantile) VC model:
#' \deqn{Y_i=\gamma_0(v_i)+\gamma_1(v_i)X_{i1}+\gamma_2(v_i)X_{i2}+\gamma_3(v_i)X_{i3}+\epsilon_i,}
#' where \eqn{\epsilon_i\sim N(0,1)}, \eqn{\gamma_{0}(v_i)=1.5\sin(0.2\pi*v_i}), \eqn{\gamma_{1}(v_i)=2\exp(0.2v_i-1)-1.5 }, \eqn{\gamma_{2}(v_i)=2-2v_i } and \eqn{\gamma_3(v_i)=-4+(v_i-2)^3/6}.
#'
#' @examples
#' data(data)
#' data = data$data_linear
#' g=data$g
#' dim(g)
#' y=data$y
#' coeff=data$coeff
#' print(coeff)
#'
#' data = data$data_binary
#' g=data$g
#' dim(g)
#' y=data$y
#' coeff=data$coeff
#' print(coeff)
#'
#' data = data$data_group
#' g=data$g
#' dim(g)
#' y=data$y
#' coeff=data$coeff
#' print(coeff)
#'
#' data = data$data_varying
#' g=data$g
#' dim(g)
#' coeff=data$coeff
#' print(coeff)
#'
#'
#' @seealso \code{\link{pqrBayes}}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.