Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(predRupdate)
## ----echo = FALSE-------------------------------------------------------------
coefs_table <- data.frame("Coefficient" = c(-3.995,
0.72918,
0.06249,
1.67003,
0.75348,
0.47859))
row.names(coefs_table) <- c("(Intercept)", "Age spline1" , "Age spline2", "Age spline3", "Age spline4", "SexM")
knitr::kable(coefs_table, caption = "Table of coefficients for the existing logistic regression prediction model")
## -----------------------------------------------------------------------------
# create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Intercept" = -3.995, #the intercept needs to be named exactly as given here
"Age_spline1" = 0.72918,
"Age_spline2" = 0.06249,
"Age_spline3" = 1.67003,
"Age_spline4" = 0.75348,
"SexM" = 0.47859)
#pass this into pred_input_info()
Existing_Logistic_Model <- pred_input_info(model_type = "logistic",
model_info = coefs_table)
summary(Existing_Logistic_Model)
## -----------------------------------------------------------------------------
Age_spline <- splines::bs(SYNPM$ValidationData$Age,
knots = c(50.09),
Boundary.knots = c(36, 64))
head(Age_spline)
## -----------------------------------------------------------------------------
ValidationData <- SYNPM$ValidationData
ValidationData$Age_spline1 <- Age_spline[,1]
ValidationData$Age_spline2 <- Age_spline[,2]
ValidationData$Age_spline3 <- Age_spline[,3]
ValidationData$Age_spline4 <- Age_spline[,4]
## -----------------------------------------------------------------------------
validation_results <- pred_validate(x = Existing_Logistic_Model,
new_data = ValidationData,
binary_outcome = "Y")
summary(validation_results) #use summary() to obtain a tidy output summary of the model performance
## ----fig.height=6, fig.width=6------------------------------------------------
validation_results$flex_calibrationplot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.