Nothing
#' Print objects of class \code{predint}
#'
#' @param x an object of class \code{predint}
#' @param ... additional arguments passed over to \code{base::cbind()} and \code{base::data.frame()}
#'
#' @return prints output to the console
#' @export
#'
print.predint <- function(x, ...){
# input needs to be a predint object
if(!inherits(x, "predint")){
stop("x must be of class predint")
}
# get the confidence level
if(!is.null(attributes(x)$alpha)){
conf_lev <- paste((1-attributes(x)$alpha)*100, "%")
}
if(is.null(attributes(x)$alpha)){
conf_lev <- NULL
}
#-----------------------------------------------------------------------
### lmer_pi_...
if(inherits(x, "normalPI")){
# alternative = both
if(x$alternative == "both"){
# Title
if(x$m > 1){
cat("Simultanious", conf_lev, "prediction interval for", x$m, "future observations \n \n")
}
if(x$m == 1){
cat("Pointwise", conf_lev, "prediction interval for one future observation \n \n")
}
}
# alternative is not both
if(x$alternative == "lower"){
# Title
if(x$m > 1){
cat("One-sided simultanious", conf_lev, "lower prediction limit for", x$m, "future observations \n \n")
}
if(x$m == 1){
cat("One-sided pointwise", conf_lev, "lower prediction limit for one future observation \n \n")
}
}
# alternative is not both
if(x$alternative == "upper"){
# Title
if(x$m > 1){
cat("One-sided simultanious", conf_lev, "upper prediction limit for", x$m, "future observations \n \n")
}
if(x$m == 1){
cat("One-sided pointwise", conf_lev, "upper prediction limit for one future observation \n \n")
}
}
out <- data.frame(x$prediction, ...)
print(out)
}
#-----------------------------------------------------------------------
### Beta-binomial PI and Quasi-binomial PI
if(inherits(x, "betaBinomialPI") | inherits(x, "quasiBinomialPI")){
# alternative = both
if(x$alternative == "both"){
# Title
if(length(x$newsize)> 1){
cat("Simultanious", conf_lev, "prediction intervals for", length(x$newsize), "future observations \n \n")
}
if(length(x$newsize) == 1){
cat("Pointwise", conf_lev, "prediction interval for one future observation \n \n")
}
}
# alternative == "upper"
if(x$alternative == "upper"){
# Title
if(length(x$newsize) > 1){
cat("One-sided simultanious", conf_lev, "upper prediction limits for", length(x$newsize), "future observations \n \n")
}
if(length(x$newsize) == 1){
cat("One-sided pointwise", conf_lev, "upper prediction limit for one future observation \n \n")
}
}
# alternative == "upper"
if(x$alternative == "lower"){
# Title
if(length(x$newsize) > 1){
cat("One-sided simultanious", conf_lev, "lower prediction limits for", length(x$newsize), "future observations \n \n")
}
if(length(x$newsize) == 1){
cat("One-sided pointwise", conf_lev, "lower prediction limit for one future observation \n \n")
}
}
out <- cbind(x$prediction, data.frame(newsize=x$newsize, ...), ...)
print(out)
}
#-----------------------------------------------------------------------
### Quasi-Poisson or negative-binomial PI
if(inherits(x, "quasiPoissonPI") | inherits(x, "negativeBinomialPI")){
# alternative = both
if(x$alternative == "both"){
# Title
if(length(x$newoffset)> 1){
cat("Simultanious", conf_lev, "prediction intervals for", length(x$newoffset), "future observations \n \n")
}
if(length(x$newoffset) == 1){
cat("Pointwise", conf_lev, "prediction interval for one future observation \n \n")
}
}
# alternative == "upper"
if(x$alternative == "upper"){
# Title
if(length(x$newoffset) > 1){
cat("One-sided simultanious", conf_lev, "upper prediction limits for", length(x$newoffset), "future observations \n \n")
}
if(length(x$newoffset) == 1){
cat("One-sided pointwise", conf_lev, "upper prediction limit for one future observation \n \n")
}
}
# alternative == "upper"
if(x$alternative == "lower"){
# Title
if(length(x$newoffset) > 1){
cat("One-sided simultanious", conf_lev, "lower prediction limits for", length(x$newoffset), "future observations \n \n")
}
if(length(x$newoffset) == 1){
cat("One-sided pointwise", conf_lev, "lower prediction limit for one future observation \n \n")
}
}
out <- cbind(x$prediction, data.frame(newoffset=x$newoffset, ...), ...)
print(out)
}
#-----------------------------------------------------------------------
# bootstrap
if(inherits(x, "bootstrap")){
cat(length(x$bs_futdat), "bootstrap samples for both, future and historical observations")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.