e_step_func | R Documentation |
A wrapper function estimating posterior expectations of the \gamma
variables using an empirical Bayesian technqiue.
e_step_func(beta_t, beta_var, df, adj = 5, lambda = 0.1, monotone = TRUE)
beta_t |
Expectation of the posterior mean (assuming |
beta_var |
Current posterior variance (assuming |
df |
Degrees of freedom for the t-distribution (use to calculate p-values). |
adj |
Bandwidth multiplier to Silverman's ‘rule of thumb’ for calculating the marginal density of the test-statistics (default = 5). |
lambda |
Value of the |
monotone |
Logical - Should the estimated marginal density of the test-statistics be monotone non-increasing from zero (default = TRUE). |
A list including
delta
estimated posterior expectations of the \gamma
.
pi0
estimated proportion of null hypothesis
Storey, J. D., Taylor, J. E., and Siegmund, D. (2004), “Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach,” J. R. Stat. Soc. Ser. B. Stat. Methodol., 66, 187–205. McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.