| e_step_func | R Documentation |
A wrapper function estimating posterior expectations of the \gamma variables using an empirical Bayesian technqiue.
e_step_func(beta_t, beta_var, df, adj = 5, lambda = 0.1, monotone = TRUE)
beta_t |
Expectation of the posterior mean (assuming |
beta_var |
Current posterior variance (assuming |
df |
Degrees of freedom for the t-distribution (use to calculate p-values). |
adj |
Bandwidth multiplier to Silverman's ‘rule of thumb’ for calculating the marginal density of the test-statistics (default = 5). |
lambda |
Value of the |
monotone |
Logical - Should the estimated marginal density of the test-statistics be monotone non-increasing from zero (default = TRUE). |
A list including
delta estimated posterior expectations of the \gamma.
pi0 estimated proportion of null hypothesis
Storey, J. D., Taylor, J. E., and Siegmund, D. (2004), “Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach,” J. R. Stat. Soc. Ser. B. Stat. Methodol., 66, 187–205. McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.