m_step_regression | R Documentation |
A wrapper function providing the quantities related to the M-step for \alpha_0
and \sigma^2
.
m_step_regression(Y, W, W2, Z = NULL, a = -3/2, Int = TRUE)
Y |
A matrix containing the outcome |
W |
Quantity |
W2 |
Quantity |
Z |
A matrix or dataframe of other predictors to account for |
a |
(optional) parameter for changing the hyperparameter |
Int |
(optional) Logical - should an intercept be used? |
A list including
coef
the MAP estimates of the \alpha_0
parameters
sigma2_est
the MAP estimate of \sigma^2
VCV
posterior variance covariance matrix of \alpha_0
,
res_data
dataframe containing MAP estimates, posterior variances, t-test statistics and associated p-values for \alpha_0
McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.