Description Usage Arguments Details Value References See Also Examples
Computes pseudo-observations for modeling using the number of years lost.
1 |
time |
the follow up time. |
event |
the cause indicator, use 0 as censoring code and integers to name the other causes. |
tmax |
the maximum cut-off point time = the upper limit of the integral of the cumulative incidence function. If missing or larger than the maximum follow up time, it is replaced by the maximum follow up time. |
The function calculates the pseudo-observations for the expected number of years lost for each individual.
The pseudo-observations can be used for fitting a regression model with a generalized estimating equation.
No missing values in either time
or event
vector are allowed.
A list containing the following objects:
cause |
The ordered codes for different causes. |
pseudo |
A list of vectors- a vector for each of the causes, ordered by codes. Each value of a vector belongs to one individual (ordered as in the original data set). |
Andersen P.K.: "A note on the decomposition of number of life years lost according to causes of death." Research report, Department of Biostatistics, University of Copenhagen, 2012 (2)
pseudoci
,
pseudomean
,
pseudosurv
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(KMsurv)
data(bmt)
bmt$icr <- bmt$d1 + bmt$d3
#compute the pseudo-observations:
pseudo = pseudoyl(time=bmt$t2, event=bmt$icr,tmax=2000)
#arrange the data - use pseudo observations for cause 2
a <- cbind(bmt,pseudo = pseudo$pseudo[[2]],id=1:nrow(bmt))
#fit a regression model for cause 2
library(geepack)
summary(fit <- geese(pseudo ~ z1 + as.factor(z8) + as.factor(group),
data = a, id=id, jack = TRUE, family=gaussian,
corstr="independence", scale.fix=FALSE))
#rearrange the output
round(cbind(mean = fit$beta,SD = sqrt(diag(fit$vbeta.ajs)),
Z = fit$beta/sqrt(diag(fit$vbeta.ajs)), PVal =
2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs))))),4)
|
Loading required package: KMsurv
Loading required package: geepack
Call:
geese(formula = pseudo ~ z1 + as.factor(z8) + as.factor(group),
id = id, data = a, family = gaussian, scale.fix = FALSE,
corstr = "independence", jack = TRUE)
Mean Model:
Mean Link: identity
Variance to Mean Relation: gaussian
Coefficients:
estimate san.se ajs.se wald p
(Intercept) 879.34078 219.365201 223.196421 16.0686341 6.108751e-05
z1 10.10276 6.904353 7.083291 2.1410852 1.434004e-01
as.factor(z8)1 496.34909 171.529255 174.862683 8.3733271 3.807679e-03
as.factor(group)2 -673.50096 184.882614 186.715577 13.2704084 2.696285e-04
as.factor(group)3 -119.96162 218.358110 222.249313 0.3018186 5.827446e-01
Scale Model:
Scale Link: identity
Estimated Scale Parameters:
estimate san.se ajs.se wald p
(Intercept) 636758 49853.98 52685.27 163.1357 0
Correlation Model:
Correlation Structure: independence
Returned Error Value: 0
Number of clusters: 137 Maximum cluster size: 1
mean SD Z PVal
(Intercept) 879.3408 223.1964 3.9398 0.0001
z1 10.1028 7.0833 1.4263 0.1538
as.factor(z8)1 496.3491 174.8627 2.8385 0.0045
as.factor(group)2 -673.5010 186.7156 -3.6071 0.0003
as.factor(group)3 -119.9616 222.2493 -0.5398 0.5894
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.