Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(rio)
library(splines)
library(statmod)
## load data from psre package
data(gss)
## decrease the variance of sei01, make sex a factor,
## and recode values of education less than 6 to 6.
## select only the required variables, then listwise
## delete.
gss <- gss %>%
mutate(sei01 = sei10/100,
sex = factorize(sex),
educ = case_when(
educ < 6 ~ 6,
TRUE ~ educ)) %>%
dplyr::select(childs, age, sei01, sex, educ) %>%
na.omit()
## estimate a poisson glm with spline
splmod <- glm(childs ~ bs(age, degree=2, knots=c(43.5, 80.5)) + sei01 + sex + educ,
data=gss, family=poisson)
## get fitted values, residuals and
## constant information scale from model
res_datb <- tibble(
fit = fitted(splmod),
eq = qresid(splmod),
cis_fit = sqrt(fit))
## A. Residual plot
ggplot(res_datb,
aes(x=cis_fit, y=eq)) +
geom_point(shape=1, col="gray50") +
geom_smooth(method="loess", se=FALSE, col="black") +
theme_classic() +
labs(x="Constant Information Scale", y="Standardized Deviance Residuals")
# ggssave("output/f10_14a.png", height=4.5, width=4.5, units="in", dpi=300)
## get quantile-quantile data
qqdf <- qqPoints(qresid(splmod))
a <- attr(qqdf, "ab")[1]
b <- attr(qqdf, "ab")[2]
l <- min(qqdf$theo) * b + a
u <- max(qqdf$theo) * b + a
## B. Quantile Comparison Plot
ggplot(qqdf, aes(x=theo, y=x)) +
geom_ribbon(aes(ymin=lwr, ymax=upr), alpha=.15) +
geom_segment(aes(x=min(qqdf$theo), xend=max(qqdf$theo), y = l, yend=u)) +
geom_point(shape=1) +
theme_classic() +
labs(x="Theoretical Quantiles",
y="Observed Quantiles")
# ggssave("output/f10_14fb.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.