Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(ggeffects)
library(factorplot)
library(qvcalc)
## load data from psre package
data(wvs)
## make civilization factor, religious society variable
## and percent with at least secondary education.
wvs <- wvs %>% mutate(
civ = case_when(
civ == 4 ~ "Islamic",
civ == 6 ~ "Latin American",
civ == 7 ~ "Orthodox",
civ == 8 ~ "Sinic",
civ == 9 ~ "Western",
TRUE ~ "Other"),
civ = factor(civ, levels=c("Western", "Sinic", "Islamic", "Latin American",
"Orthodox", "Other")),
pct_sec_plus = pct_secondary + pct_some_univ + pct_univ_degree,
rel_soc = factor(as.numeric(pct_high_rel_imp > .75),
levels=c(0,1), labels=c("No", "Yes"))
)
## make democracy factor variable and retain only each country's
## first observation in the data.
wvs1 <- wvs %>%
mutate(democrat= factor(democrat, levels=1:2,
labels=c("New Democracy",
"Established Democracy"))) %>%
group_by(country) %>%
arrange(wave) %>%
slice_head(n=1) %>%
ungroup %>%
arrange(democrat, gini_disp) %>%
dplyr::select(civ, resemaval, gdp_cap, pop, rel_soc,
pct_sec_plus, polrt) %>%
na.omit() %>%
## replace political rights with 1 if it is missing
mutate(polrt = case_when(polrt == "" ~ "1",
TRUE ~ polrt),
pr_fac = as.factor(polrt),
pr_num = as.numeric(polrt))
## estimate models treating political rights as both
## quantitative (modc) and categorical (modd)
modc <- lm(resemaval ~ pr_num, data=wvs1)
modd <- lm(resemaval ~ pr_fac, data=wvs1)
## use factorplot to identify the differences among
## coefficients for the pr_fac variable.
f <- factorplot(modd, factor.var="pr_fac", adjust.method = "none")
## use qvcalc to calculate the quasi variances
## for all levels of pr_fac (including the reference)
qpr <- qvcalc(modd, "pr_fac")
bpr <- c(0, coef(modd)[-1])
## make 95% quasi-confidence intervals
qci <- apply(outer(qt(.975, modd$df.residual)*qpr$qvframe[,3], c(-1,1), "*"),
2, function(x)bpr+x)
## organize confidence intervals and coefficients into
## a data frame.
qplot_dat <- data.frame(
x =1:7,
y=bpr,
low = qci[,1],
up = qci[,2]
)
## make plot
ggplot(qplot_dat, aes(x=x, y=y, ymin=low, ymax=up)) +
geom_errorbar(width=.15) +
geom_point() +
theme_classic() +
labs(x="Political Rights", y="Predicted Emancipative Values")
# ggssave("output/f6_2.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.