Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(ggeffects)
library(factorplot)
library(qvcalc)
## load data from psre package
data(wvs)
## make civilization factor, religious society variable
## and percent with at least secondary education.
wvs <- wvs %>% mutate(
civ = case_when(
civ == 4 ~ "Islamic",
civ == 6 ~ "Latin American",
civ == 7 ~ "Orthodox",
civ == 8 ~ "Sinic",
civ == 9 ~ "Western",
TRUE ~ "Other"),
civ = factor(civ, levels=c("Western", "Sinic", "Islamic", "Latin American",
"Orthodox", "Other")),
pct_sec_plus = pct_secondary + pct_some_univ + pct_univ_degree,
rel_soc = factor(as.numeric(pct_high_rel_imp > .75),
levels=c(0,1), labels=c("No", "Yes"))
)
## make democracy factor variable and retain only each country's
## first observation in the data.
wvs1 <- wvs %>%
mutate(democrat= factor(democrat, levels=1:2,
labels=c("New Democracy",
"Established Democracy"))) %>%
group_by(country) %>%
arrange(wave) %>%
slice_head(n=1) %>%
ungroup %>%
arrange(democrat, gini_disp) %>%
dplyr::select(civ, resemaval, gdp_cap, pop, rel_soc,
pct_sec_plus, polrt) %>%
na.omit() %>%
## replace political rights with 1 if it is missing
mutate(polrt = case_when(polrt == "" ~ "1",
TRUE ~ polrt),
pr_fac = as.factor(polrt),
pr_num = as.numeric(polrt))
## estimate models treating political rights as both
## quantitative (modc) and categorical (modd)
modc <- lm(resemaval ~ pr_num, data=wvs1)
modd <- lm(resemaval ~ pr_fac, data=wvs1)
## use factorplot to identify the differences among
## coefficients for the pr_fac variable.
f <- factorplot(modd, factor.var="pr_fac", adjust.method = "none")
## use qvcalc to calculate the quasi variances
## for all levels of pr_fac (including the reference)
qvpr <- qvcalc(modd, "pr_fac")$qvframe
## Using 0 as the estimate for the reference category
## and the quasi-variances from the qvcalc procedure
## as the variance-covariance matrix, calculate the
## optimal visual hypothesis testing confidence level
## for the plot
bpr <- c(0, coef(modd)[-1])
vpr <- diag(qvpr[,4])
o <- optCL(modd, "pr_fac", b=bpr, v=vpr)
## the optCL function identifies confidence levels in the range
## (0.75, 0.85) as the appropriate levels (call these alpha).
## we can find the appropriate confidence intervals by using
## the critical t-value of (1-alpha)/2 for .75, .8 and .85,
## which would be .87, .9 and .925, respectively.
qci1 <- cbind(
bpr - qt(.925, modd$df.residual)*qvpr[,3],
bpr + qt(.925, modd$df.residual)*qvpr[,3]
)
qci2 <- cbind(
bpr - qt(.9, modd$df.residual)*qvpr[,3],
bpr + qt(.9, modd$df.residual)*qvpr[,3]
)
qci3 <- cbind(
bpr - qt(.87, modd$df.residual)*qvpr[,3],
bpr + qt(.87, modd$df.residual)*qvpr[,3]
)
## make the data used in the plot
qplot_dat_opt <- data.frame(
x =1:7,
y=c(bpr,bpr, bpr),
low = c(qci1[,1], qci2[,1], qci3[,1]),
up = c(qci1[,2], qci2[,2], qci3[,2]),
clevel = factor(rep(1:3, each=7), labels=c("85%", "80%", "74%"))
)
## A. 74%
qplot_dat_opt %>% filter(clevel == "74%") %>%
ggplot( aes(x=x, y=y, ymin=low, ymax=up)) +
geom_errorbar(width=.15) +
geom_point() +
theme_classic() +
labs(x="Political Rights", y="Predicted Emancipative Values")
# ggssave("output/f6_3a.png", height=4.5, width=4.5, units="in", dpi=300)
## B. 80%
qplot_dat_opt %>% filter(clevel == "80%") %>%
ggplot( aes(x=x, y=y, ymin=low, ymax=up)) +
geom_errorbar(width=.15) +
geom_point() +
theme_classic() +
labs(x="Political Rights", y="Predicted Emancipative Values")
# ggssave("output/f6_3b.png", height=4.5, width=4.5, units="in", dpi=300)
## C. 85%
qplot_dat_opt %>% filter(clevel == "85%") %>%
ggplot( aes(x=x, y=y, ymin=low, ymax=up)) +
geom_errorbar(width=.15) +
geom_point() +
theme_classic() +
labs(x="Political Rights", y="Predicted Emancipative Values")
# ggssave("output/f6_3c.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.