Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(ggrepel)
## load data from psre package
data(wvs)
## filter to only waves 2 and 3 of the data.
## turn democrat into a factor with the appropriate labels
## keep only the first instance where the country appears in the data
wvs0 <- wvs %>%
filter(wave %in% c(3,2)) %>%
mutate(democrat= factor(democrat, levels=1:2,
labels=c("New Democracy", "Established Democracy"))) %>%
group_by(country) %>%
arrange(wave) %>%
slice_head(n=1)
## Fit different models for the two IVs
## third-degree polynomial in gini
pmod3 <- lm(secpay ~ poly(gini_disp, 3) + democrat, data=wvs0)
## linear additive model
lmod <- lm(secpay ~ gini_disp + democrat, data=wvs0)
## keep only necessary variables
w0 <- wvs0 %>% dplyr::select(democrat, gini_disp, secpay, country, year, wave)
## get residuals, predictions, etc... from the linear model
m0data <- broom::augment(lmod)
## join m0data with original data
m0data <- left_join(m0data, w0)
## add in studentized residuals
m0data$.rstud <- rstudent(lmod)
## get model matrix from linear model
m0X <- model.matrix(lmod)
## calculate the number of parameters divided by
## the number of observations
pon <- ncol(m0X)/nrow(m0X)
## calculate cut points for leverage and residuals
.h_cut <- 2*pon
.e_cut <- 2
## identify points that are above the cutpoint
## either on residuals or leverage
m0data <- m0data %>%
mutate(text = case_when(
.hat > .h_cut | abs(.rstud) > .e_cut ~ country,
TRUE ~ NA_character_))
ggplot(m0data, aes(x=.hat, y=.rstud)) +
geom_point(aes(size=.cooksd), shape=1, show.legend=FALSE) +
geom_vline(xintercept=c(2,3)*pon, lty=2) +
geom_hline(yintercept=c(-2, 2, 0), lty=2) +
geom_text_repel(aes(label=text), hjust=1, nudge_x=c(.02, .04, .0305)) +
theme_classic() +
labs(x="Hat Values", y="Studentized Residuals")
# ggssave("output/f7_5a.png", height=4.5, width=4.5, units="in", dpi=300)
## proceed as above, but using the data from the cubic polynomial
m0data <- broom::augment(pmod3)
m0data <- left_join(m0data, w0)
m0data$.rstud <- rstudent(pmod3)
m0X <- model.matrix(pmod3)
pon <- ncol(m0X)/nrow(m0X)
.h_cut <- 2*pon
.e_cut <- 2
m0data <- m0data %>%
mutate(text = case_when(
.hat > .h_cut | abs(.rstud) > .e_cut ~ country,
TRUE ~ NA_character_))
ggplot(m0data, aes(x=.hat, y=.rstud)) +
geom_point(aes(size=.cooksd), shape=1, show.legend=FALSE) +
geom_vline(xintercept=c(2,3)*pon, lty=2) +
geom_hline(yintercept=c(-2, 2, 0), lty=2) +
geom_text_repel(aes(label=text), hjust=1, nudge_x=c(0.087,0.085, 0.04, 0.055, 0)) +
theme_classic() +
labs(x="Hat Values", y="Studentized Residuals")
# ggssave("output/f7_5b.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.