Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(DAMisc)
library(car)
## load data from psre package
data(india)
## Manage india election data
india <- india %>%
## make urban a binary variable
mutate(urban = case_when(
urbrural %in% c(1,2) ~ 1,
urbrural %in% 3:5 ~ 0,
TRUE ~ NA_real_),
## make urban and sbc factors
urban = as.factor(urban),
sbc = as.factor(sbc),
## make bjp a dummy variable indicating
## bjp vote
bjp = case_when(
in_prty == 2 ~ 1,
in_prty %in% c(1,3,4,5) ~ 0,
TRUE ~ NA_real_),
## recode ethnicity into broader categories
eth = case_when(
in_ethn1 %in% 1:4 ~ "Hindu",
in_ethn1 %in% 5:7 ~ "Muslim",
in_ethn1 %in% 8:12 ~ "Other",
TRUE ~ NA_character_),
eth = as.factor(eth),
## make topbot into a three-category variable
tb3 = case_when(
topbot %in% 1:3 ~ "Low",
topbot %in% 4:7 ~ "Middle",
topbot %in% 8:10 ~ "High",
TRUE ~ NA_character_),
tb3 = factor(tb3, levels=c("Low", "Middle", "High")))
## logit model without product term
mod1 <- glm(bjp ~ eth + educyrs + sbc + tb3 + urban +
anti_immigration,
data=india, family=binomial)
## logit model with product term
mod1i <- glm(bjp ~ eth*educyrs + sbc + tb3 + urban +
anti_immigration,
data=india, family=binomial)
## get y and predicted y from the model (additive)
y <- model.response(model.frame(mod1i))
yhat <- as.numeric(predict(mod1, type="response") > .5)
## make the cross-tabulation
tab <- table(yhat, y)
## print counts and column percentages
tabp <- sprintf("%.0f", tab)
ptab <- prop.table(tab, 2)*100
ptabp <- sprintf("(%.0f%%)", ptab)
## make into a data frame
tab11_3 <- tibble(
Classification = c("Negative", "", "Positive", ""),
True_Negative = c(tab[1,1], ptabp[1], tab[2,1], ptabp[2]),
True_Positive = c(tab[1,2], ptabp[3], tab[2,2], ptabp[4])
)
tab11_3
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.