Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(psre)
library(tidyverse)
library(DAMisc)
library(stargazer)
## load data from psre package
data(wvs)
## Civilization labels
codes <- c("Other", "African", "Buddhist", "Hindu", "Islamic", "Japanese",
"Latin American", "Orthodox", "Sinic", "Western")
## recode civilization categories
wvs <- wvs %>% mutate(
civ = case_when(
civ == 4 ~ "Islamic",
civ == 6 ~ "Latin American",
civ == 7 ~ "Orthodox",
civ == 8 ~ "Sinic",
civ == 9 ~ "Western",
TRUE ~ "Other"),
civ = factor(civ, levels=c("Western", "Sinic", "Islamic", "Latin American",
"Orthodox", "Other")),
## create percent with secondary education or more
pct_sec_plus = pct_secondary + pct_some_univ + pct_univ_degree,
## create religious society variable
rel_soc = factor(as.numeric(pct_high_rel_imp > .75),
levels=c(0,1), labels=c("No", "Yes"))
)
wvs1 <- wvs %>%
## create democratic history factor
mutate(democrat= factor(democrat, levels=1:2,
labels=c("New Democracy",
"Established Democracy"))) %>%
## keep only first instance of country in data
group_by(country) %>%
arrange(wave) %>%
slice_head(n=1) %>%
ungroup %>%
arrange(democrat, gini_disp) %>%
## keep required variables
select(civ, resemaval, gdp_cap, pop, rel_soc,
pct_sec_plus, polrt) %>%
## listwise delete
na.omit() %>%
## replace political rights =1 if it is currently ""
mutate(polrt = case_when(polrt == "" ~ "1",
TRUE ~ polrt))
## rescale GDP values
wvs1 <- wvs1 %>% mutate(gdp_cap10 = gdp_cap/10000)
## estimate raw data model
m7 <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=wvs1)
## standardize quantitative variables and estimate model
m7a <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=scaleDataFrame(wvs1))
## standardize only quantitative x-variables
m7b <- wvs1 %>%
mutate(across(c(gdp_cap10, pct_sec_plus), ~c(scale(.x)))) %>%
lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=.)
## gelman standardization of quantitative x-variables
tmp2 <- wvs1 %>%
mutate(across(c(gdp_cap10, pct_sec_plus), ~.x/(2*sd(.x))))
m7c <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=tmp2)
## make a function to rescale variables in the range (0,1)
rs01 <- function(x){
z <- x-min(x, na.rm=TRUE)
z <- z/max(z, na.rm=TRUE)
z
}
## rescale quantitative variables in (0,1) and estimate model
tmp1 <- wvs1 %>%
mutate(across(c(gdp_cap10, pct_sec_plus), ~rs01(.x)))
m7d <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=tmp1)
stargazer(m7, m7a, m7b, m7c, m7d, digits=3, type="text")
## calculate importance
## There is an error in the text - importance for post-secondary education
## should be 0.01
srr_imp(m7, wvs1, R=1500)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.