backsolve.seFDPoalpha | R Documentation |
backsolve.seFDPoalpha finds the missing argument, one of 'N.tests', 'r.1', 'n.sample' or 'effect size' giving the specified value of se[FDP]/alpha under the BH-FDR procedure.
backsolve.seTPPoavgpwr finds the missing argument, one of 'N.tests', 'r.1', 'n.sample' or 'effect size' giving the specified value of se[TPP]/average.power under the BH-FDR procedure.
backsolve.seFDPoalpha(seFDPoalpha, effect.size, n.sample, r.1, alpha, groups = 2, N.tests,
type = "balanced", grpj.per.grp1 = 1, distopt = 1, rho, k.bs)
backsolve.seTPPoavgpwr(seTPPoavgpwr, effect.size, n.sample, r.1, alpha, groups = 2,
N.tests, type = "balanced", grpj.per.grp1 = 1, distopt = 1, rho,
k.bs)
seFDPoalpha |
In backsolve.seFDPoalpha, the user specified value of se[FDP]/alpha |
seTPPoavgpwr |
In backsolve.seTPPoavgpwr, the user specified value of se[TPP]/average.power |
effect.size |
The effect size (mean over standard deviation) for test statistics having non-zero means. Assumed to be a constant (in magnitude) over non-zero mean test statistics. |
n.sample |
The number of experimental replicates. Required for calculation of power |
r.1 |
The proportion of simultaneous tests that are non-centrally located |
alpha |
The false discovery rate (in the BH case) or the upper bound on the probability that the FDP exceeds delta (BHFDX and Romano case) |
groups |
The number of experimental groups to compare. Must be integral and >=1. The default value is 2. |
N.tests |
The number of simultaneous hypothesis tests. |
type |
A character string specifying, in the groups=2 case, whether the test is 'paired', 'balanced', or 'unbalanced' and in the case when groups >=3, whether the test is 'balanced' or 'unbalanced'. The default in all cases is 'balanced'. Left unspecified in the one sample (groups=1) case. |
grpj.per.grp1 |
Required when |
distopt |
Test statistic distribution in among null and alternatively distributed sub-populations. distopt=0 gives normal (2 groups), distop=1 gives t- (2 groups) and distopt=2 gives F- (2+ groups) |
rho |
This can be done under the assumption of tests that are correlated identically in pair within blocks of given size. |
k.bs |
When 'rho' is specified, the common block-size for correlated test statistics. |
A numeric vector having components
<missing argument> |
Value of missing argument giving required se[FDP]/alpha (backsolve.seFDPoalpha) or se[TPP]/average.power (backsolve.seTPPoavgpwr). |
average.power |
The average power at the given set of conditions |
se.VoR/se.ToM |
The standard error of the FDP (backsolve.seFDPoalpha) or standard error of the TPP (backsolve.seTPPoavgpwr). |
value |
Value returned by the solver. Should be near zero if a solution was found. |
Grant Izmirlian Jr <izmirlian at nih dot gov>
Izmirlian G. (2020) Strong consistency and asymptotic normality for quantities related to the Benjamini-Hochberg false discovery rate procedure. Statistics and Probability Letters; 108713, <doi:10.1016/j.spl.2020.108713>
Izmirlian G. (2017) Average Power and \lambda
-power in
Multiple Testing Scenarios when the Benjamini-Hochberg False
Discovery Rate Procedure is Used. <arXiv:1801.03989>
Jung S-H. (2005) Sample size for FDR-control in microarray data analysis. Bioinformatics; 21:3097-3104.
Kluger D. M., Owen A. B. (2023) A central limit theorem for the Benjamini-Hochberg false discovery proportion under a factor model. Bernoulli; xx:xxx-xxx.
Liu P. and Hwang J-T. G. (2007) Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics; 23:739-746.
Lehmann E. L., Romano J. P.. Generalizations of the familywise error rate. Ann. Stat.. 2005;33(3):1138-1154.
Romano Joseph P., Shaikh Azeem M.. Stepup procedures for control of generalizations of the familywise error rate. Ann. Stat.. 2006;34(4):1850-1873.
backsolve.seFDPoalpha(seFDPoalpha=0.50, n.sample=50, alpha=0.05, effect.size=0.8,
r.1=0.20)
backsolve.seTPPoavgpwr(seTPPoavgpwr=0.20, n.sample=30, alpha=0.05, effect.size=0.8,
r.1=0.20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.