Nothing
#' Conditional heatmap
#'
#' `cond_heatmap` shows the conditional distribution of the `y`
#' of variables for each quantile bin of `x`. It is an alternative to
#' [cond_boxplot()], fine graining the distribution per [qbin()].
#' [cond_barplot()] highlights the median/mean of the quantile bins, while
#' [funq_plot()] highlights the functional dependency of the median.
#'
#' @param bins `integer` vector with the number of bins to use for the x and y axis.
#' @param ncols The number of column to be used in the layout.
#' @param fill The color used for categorical variables.
#' @param low The color used for low values in the heatmap.
#' @param high The color used for high values in the heatmap.
#' @param show_bins If `TRUE`, show the bin boundaries on the x-axis.
#' @param auto_fill If `TRUE`, use a different color for each category.
#' @param ... Additional arguments to pass to the plot functions
#' @export
#' @inheritParams qbin
#' @example example/cond_heatmap.R
#' @family conditional quantile plotting functions
#' @return A `list` of ggplot objects.
cond_heatmap <- function(
data,
x = NULL,
n = 100,
min_bin_size = NULL,
overlap = NULL,
bins = c(n,25),
# type = c("gradient", "size"),
ncols=NULL,
auto_fill = FALSE,
show_bins = FALSE,
fill = "#2f4f4f",
low = "#eeeeee",
high = "#2f4f4f",
...
) {
bins <- as.integer(bins)
d <- qbin(
# only bin the specific x column
data,
x = x,
n = bins[1],
min_bin_size = min_bin_size,
overlap = overlap
)
x <- d$x
n <- d$n
bins[1] <- d$n
if (length(bins) == 1){
bins <- c(bins, bins)
}
num_cols <- d$num_cols
m <- match(x, num_cols)
# remove sort_column
num_cols <- num_cols[-m]
x_name <- x
x_data <- d$data[[x]]
x_bin <-
data[[x]] |>
order() |>
order() |>
cut(
bins[1],
labels = FALSE
)
pn <- lapply(num_cols, function(y_name){
y <- data[[y_name]]
plot_cond_heatmap_gradient(
x_data = x_data,
x_bin = x_bin,
y = y,
bins = bins,
x_name = x_name,
y_name = y_name,
# needed for gradient
low = low,
high = high,
# needed for size
fill = fill,
show_bins = show_bins
)
})
names(pn) <- num_cols
pc <- lapply(d$cat_cols, function(y_name){
#plot_cat(d$data[[n]], n)
y_data <- d$data[[y_name]]
plot_cond_cat_area(
x_data,
y_data = y_data,
x_name = x,
y_name = y_name,
fill = fill,
auto_fill = auto_fill
)
})
names(pc) <- d$cat_cols
idx <- match(d$x, names(data))
p <- c(pn, pc)[names(data)[-idx]]
if (isTRUE(auto_fill)){
p <- set_palettes(p, d$cat_cols)
}
p <- condplotlist(p, x = x, ncols = ncols)
p
}
# data <- iris
# n <- 25
# d <- qbin(iris, n = n)
# d
# cond_heatmap(iris, n = 25)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.