Nothing
#' Province dataset example
#'
#' @docType data
#' @name province
#' @usage province
#' @format This data set allows to estimate the relationships among Health (\code{HEALTH}),
#' Education and training (\code{EDU}) and Economic well-being (\code{ECOW})
#' in the Italian provinces using a subset of the indicators collected by the Italian Statistical
#' Institute (ISTAT) to measure equitable and sustainable well-being (BES, from the Italian Benessere
#' Equo e Sostenibile) in territories. Data refers to the 2019 edition of the BES report (ISTAT, 2018,
#' 2019a, 2019b). A subset of 16 indicators (manifest variables) are observed on the 110 Italian provinces
#' and metropolitan cities (i.e. at NUTS3 level) to measure the latent variables \code{HEALTH}, \code{EDU}
#' and \code{ECOW}. The interest in such an application concerns both advances in knowledge
#' about the dynamics producing the well-being outcomes at local level (multiplier effects or trade-offs)
#' and a more complete evaluation of regional inequalities of well-being.
#'
#' Data Strucuture
#'
#' A data frame with 110 Italian provinces and metropolitan cities and 16 variables (i.e., indicators) related to
#' three latent variables: Health (3 indicators), Education and training (7 indicators), and Economic well-being
#' (6 indicators).
#'
#'
#' Manifest variables description for each latent variable:
#'
#'\describe{
#'\item{LV1}{Education and training (\code{EDU})}
#'\describe{
#'\item{MV1 \code{EDU1}(O.2.2):}{people with at least upper secondary education level (25-64 years old)}
#'\item{MV2 \code{EDU2}(O.2.3):}{people having completed tertiary education (30-34 years old)}
#'\item{MV3 \code{EDU3}(O.2.4):}{first-time entry rate to university by cohort of upper secondary graduates}
#'\item{MV4 \code{EDU4}(O.2.5aa):}{people not in education, employment or training (Neet)}
#'\item{MV5 \code{EDU5}(O.2.6):}{ratio of people aged 25-64 years participating in formal
#'or non-formal education to the total people aged 25-64 years}
#'\item{MV6 \code{EDU6}(O_2.7_2.8):}{scores obtained in the tests of functional skills of the
#'students in the II classes of upper secondary education}
#'\item{MV7 \code{EDU7}(O_2.7_2.8_A):}{Differences between males and females students in the level of
#'numeracy and literacy}
#'}
#'\item{LV2}{Economic wellbeing (\code{ECOW})}
#'\describe{
#'\item{MV8 \code{ECOW1}(O.4.1):}{per capita disposable income}
#'\item{MV9 \code{ECOW2}(O.4.4aa):}{pensioners with low pension amount}
#'\item{MV10 \code{ECOW3}(O.4.5):}{per capita net wealth}
#'\item{MV11 \code{ECOW4}(O.4.6aa):}{rate of bad debts of the bank loans to families}
#'\item{MV12 \code{ECOW5}(O.4.2):}{average annual salary of employees}
#'\item{MV13 \code{ECOW6}(O.4.3):}{average annual amount of pension income per capita}
#'}
#'#'\item{LV3}{Health (\code{HEALTH})}
#'\describe{
#'\item{MV14 \code{HEALTH1}(O.1.1F):}{life expectancy at birth of females}
#'\item{MV15 \code{HEALTH2}(O.1.1M):}{life expectancy at birth of males}
#'\item{MV16 \code{HEALTH3}(O.1.2.MEAN_aa):}{infant mortality rate}
#'}
#'}
#'
#' For a full description of the variables, see table 3 of Davino et al. (2020).
#'
#'
#' @references Davino, C., Dolce, P., Taralli, S. and Vistocco, D. (2020). Composite-based
#' path modeling for conditional quantiles prediction. An application to assess
#' health differences at local level in a well-being perspective.
#' \emph{Social Indicators Research}, doi:10.1007/s11205-020-02425-5.
#'
#' @references Davino, C., Dolce, P., Taralli, S., Esposito Vinzi, V. (2018). A quantile
#' composite-indicator approach for the measurement of equitable and sustainable well-being:
#' A case study of the italian provinces. \emph{Social Indicators Research}, \bold{136}, pp. 999--1029,
#' doi: 10.1007/s11205-016-1453-8
#'
#' @references Davino, C., Dolce, P., Taralli, S. (2017). Quantile composite-based model:
#' A recent advance in pls-pm. A preliminary approach to handle heterogeneity in the measurement
#' of equitable and sustainable well-being. In Latan, H. and Noonan, R. (eds.), \emph{Partial Least
#' Squares Path Modeling: Basic Concepts, Methodological Issues and Applications} (pp. 81--108).
#' Cham: Springer.
#'
#'@references ISTAT. (2019a). Misure del Benessere dei territori. Tavole di dati. Rome,
#'Istat.
#'
#'@references ISTAT. (2019b). Le differenze territoriali di benessere - Una lettura a livello
#'provinciale. Rome, Istat.
#'
#'@references ISTAT. (2018). Bes report 2018: Equitable and sustainable well-being in Italy.
#'Rome, Istat.
#'
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.