Nothing
context("tuneLearnFast")
# test_that("tuneLearnFast_gamlss", {
#
# #set.seed(651)
# n <- 1000
# x <- seq(-4, 3, length.out = n)
# X <- cbind(1, x, x^2)
# beta <- c(0, 1, 1)
# sigma = 1.2 + sin(2*x)
# f <- drop(X %*% beta)
# dat <- f + rnorm(n, 0, sigma)
# dataf <- data.frame(cbind(dat, x))
# names(dataf) <- c("y", "x")
# form <- list(y~s(x, k = 30, bs = "cr"), ~ s(x, k = 30, bs = "cr"))
#
# QU <- 0.9
# lossType <- rep(c("calFast", "cal", "pin"), each = 2)
#
# par(mfrow = c(3, 2))
# par(mar = c(5.1, 4.1, 0.1, 2.1))
# for(ii in c(1, 3, 5)){ # Set to 1:6 if you want to test all calibration methods
#
# expect_error({ # Actually we expect NO error!!
# tun <- tuneLearnFast(form, data = dataf, qu = QU,
# control = list("loss" = lossType[ii], "progress" = FALSE, "K" = 20),
# multicore = ((ii %% 2) == 0), ncores = 2)
#
# fit <- qgam(form, qu = QU, lsig = tun$lsig, data = dataf)
#
# ylb <- if((ii %% 2) == 0) { paste(lossType[ii], "multicore") } else { lossType[ii] }
# plot(x, dat, col = "grey", ylab = ylb)
# tmp <- predict(fit, se = TRUE)
# lines(x, tmp$fit)
# lines(x, tmp$fit + 3 * tmp$se.fit, col = 2)
# lines(x, tmp$fit - 3 * tmp$se.fit, col = 2)
#
# plot(sort(tun$store[[1]][1, ]), tun$store[[1]][2, ][order(tun$store[[1]][1, ])], type = "b",
# ylab = "Calibration loss", xlab = expression(log(sigma)))
# }
# , NA)
#
# }
#
# })
#
#
#
#
# test_that("tuneLearnFast_egam", {
#
# set.seed(211)
# dataf <- gamSim(1,n=400,dist="normal",scale=2,verbose=FALSE)
# form <- y~s(x0)+s(x1)+s(x2)+s(x3)
#
# QU <- 0.9
# lossType <- rep(c("calFast", "cal", "pin"), each = 2)
#
# #par(mfrow = c(3, 2))
# for(ii in 1:2){
#
# expect_error({ # Actually we expect NO error!!
# tun <- tuneLearnFast(form, data = dataf, qu = QU,
# control = list("loss" = lossType[ii], "K" = 20, "progress" = FALSE),
# multicore = ((ii %% 2) == 0), ncores = 2)
#
# fit <- qgam(form, qu = QU, lsig = tun$lsig, data = dataf)
#
# ylb <- if((ii %% 2) == 0) { paste(lossType[ii], "multicore") } else { lossType[ii] }
# plot(fit, select = 3, ylab = ylb)
#
# plot(sort(tun$store[[1]][1, ]), tun$store[[1]][2, ][order(tun$store[[1]][1, ])], type = "b",
# ylab = "Calibration loss", xlab = expression(log(sigma)))
# }
# , NA)
#
# }
#
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.