Nothing
library(qpmadr)
## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
## under the constraints: A^T b >= b0
## with b0 = (-8,2,0)^T
## and (-4 2 0)
## A = (-3 1 -2)
## ( 0 0 1)
## we can use solve.QP as follows:
## s1 = solve.QP(Dmat, dvec, Amat, bvec)
Dmat <- matrix(0,3,3)
diag(Dmat) <- 1
dvec <- c(0,5,0)
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)
s2 = solveqp(Dmat,-dvec, c(0, 0, 0) ,NULL,t(Amat),bvec, NULL)
# print(s2)
expect_equivalent(s2$solution, c(0.476190, 1.047619, 2.095238), 1e-6)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.