qrnn.rbf | R Documentation |
Evaluate a kernel matrix based on the radial basis function kernel. Can
be used in conjunction with qrnn.fit
with Th
set to
linear
and penalty
set to a nonzero value for
kernel quantile ridge regression.
qrnn.rbf(x, x.basis, sigma)
x |
covariate matrix with number of rows equal to the number of samples and number of columns equal to the number of variables. |
x.basis |
covariate matrix with number of rows equal to the number of basis functions and number of columns equal to the number of variables. |
sigma |
kernel width |
kernel matrix with number of rows equal to the number of samples and number of columns equal to the number of basis functions.
qrnn.fit
x <- as.matrix(iris[,"Petal.Length",drop=FALSE])
y <- as.matrix(iris[,"Petal.Width",drop=FALSE])
cases <- order(x)
x <- x[cases,,drop=FALSE]
y <- y[cases,,drop=FALSE]
set.seed(1)
kern <- qrnn.rbf(x, x.basis=x, sigma=1)
parms <- qrnn.fit(x=kern, y=y, tau=0.5, penalty=0.1,
Th=linear, Th.prime=linear.prime,
iter.max=500, n.trials=1)
p <- qrnn.predict(x=kern, parms=parms)
matplot(x, cbind(y, p), type=c("p", "l"), pch=1, lwd=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.