View source: R/mqmpermutation.R
mqmpermutation | R Documentation |
Two randomization approaches to obtain estimates of QTL significance:
Random redistribution of traits (method='permutation')
Random redistribution of simulated trait values (method='simulation')
Calculations can be parallelized using the SNOW package.
mqmpermutation(cross, scanfunction=scanone, pheno.col=1, multicore=TRUE,
n.perm=10, file="MQM_output.txt",
n.cluster=1, method=c("permutation","simulation"),
cofactors=NULL, plot=FALSE, verbose=FALSE, ...)
cross |
An object of class |
scanfunction |
Function to use when mappingQTL's (either scanone,cim or mqm) |
pheno.col |
Column number in the phenotype matrix which should be used as the phenotype. This can be a vector of integers. |
multicore |
Use multicore (if available) |
n.perm |
Number of permutations to perform (DEFAULT=10, should be 1000, or higher, for publications) |
file |
Name of the intermediate output file used |
n.cluster |
Number of child processes to split the job into |
method |
What kind permutation should occur: permutation or simulation |
cofactors |
cofactors, only used when scanfunction is mqm.
List of cofactors to be analysed in the QTL model. To set cofactors use |
.
plot |
If TRUE, make a plot |
verbose |
If TRUE, print tracing information |
... |
Parameters passed through to the
|
Analysis of scanone
, cim
or
mqmscan
to scan for QTL in shuffled/randomized data. It is recommended to also install the snow
library.
The snow
library allows calculations to run on multiple cores or even scale it up to an entire cluster, thus speeding up calculation.
Returns a mqmmulti object. this object is a list of scanone objects that can be plotted using plot.scanone(result[[trait]])
Ritsert C Jansen; Danny Arends; Pjotr Prins; Karl W Broman broman@wisc.edu
Bruno M. Tesson, Ritsert C. Jansen (2009) Chapter 3.7. Determining the significance threshold eQTL Analysis in Mice and Rats 1, 20–25
Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.
Rossini, A., Tierney, L., and Li, N. (2003), Simple parallel statistical computing. R. UW Biostatistics working paper series University of Washington. 193
Tierney, L., Rossini, A., Li, N., and Sevcikova, H. (2004), The snow Package: Simple Network of Workstations. Version 0.2-1.
The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf
MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
# Use the multitrait dataset
data(multitrait)
multitrait <- calc.genoprob(multitrait)
result <- mqmpermutation(multitrait,pheno.col=7, n.perm=2, batchsize=2)
## Not run: #Set 50 cofactors
cof <- mqmautocofactors(multitrait,50)
## End(Not run)
multitrait <- fill.geno(multitrait)
result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
pheno.col=7, n.perm=2,batchsize=2,verbose=FALSE)
#Create a permutation object
f2perm <- mqmprocesspermutation(result)
#Get Significant LOD thresholds
summary(f2perm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.