Description Usage Arguments Details References See Also Examples
Define the inputs of a new M/M/1/K/K queueing model
1 | NewInput.MM1KK(lambda=0, mu=0, k=1, method=3)
|
lambda |
arrival rate |
mu |
server service rate |
k |
system capacity |
method |
method of computation of the probabilities of k (system capacity) customers down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag. 26 is used. With method=3, the result that K-n customers up has a truncated poisson distribution is used [Kobayashi2012] pag. 709 |
Define the inputs of a new M/M/1/K/K queueing model
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).
A course on Queueing Models.
Chapman-Hall.
[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).
Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.
Cambridge University Press.
1 2 3 | ## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.