Description Usage Arguments Details Author(s) Examples
View source: R/frame_ald_weight.R
This function calulate the weighting matrix
1  | frame_ald_weight(y, x, tau, error, iter)
 | 
y | 
 dependent variable of quantile regression  | 
x | 
 design matrix of quantile regression  | 
tau | 
 quantile must be a scaler  | 
error | 
 The EM algorithm accuracy of error used in MLE estimation  | 
iter | 
 The iteration frequancy for EM algorithm used in MLE estimation  | 
In the estimation procedure in EM algorithm, we can see that \varepsilon is inversely proportional to d_i = |y_i-x^{'}_{i}β^{(k)}_{p}|/σ. Hence, u_i(θ^{k})=\varepsilon_{-1i}(θ^{(k)}) can be interpreted as a type of weight for ith case in the estimates of β_{(k)^p}, which tends to be small for outlying observations.
Wenjing Wang wenjingwangr@gmail.com
1 2 3 4 5 6 7 8 9 10 11  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.