R/data.R

#' Longitudinal CD4 Lymphocyte Counts for HIV Patients (2018-2024)
#'
#' @description Contains longitudinal measurements of CD4 lymphocyte counts for 
#' 176 patients living with HIV, recorded over the period from 2018 to 2024. 
#' CD4 counts are a critical indicator of immune function, used to monitor the 
#' progression of HIV and the effectiveness of treatments. Measurements were 
#' taken at various points throughout the study, with some missing values due 
#' to unavailable data for specific patients at certain times.
#'
#' @format A data frame with 176 rows and 18 variables:
#' \describe{
#'   \item{ID}{Unique identifier for each patient.}
#'   \item{cd_2018_1}{CD4 count for the first measurement in 2018.}
#'   \item{cd_2018_2}{CD4 count for the second measurement in 2018.}
#'   \item{cd_2019_1}{CD4 count for the first measurement in 2019.}
#'   \item{cd_2019_2}{CD4 count for the second measurement in 2019.}
#'   \item{cd_2020_1}{CD4 count for the first measurement in 2020.}
#'   \item{cd_2021_1}{CD4 count for the first measurement in 2021.}
#'   \item{cd_2021_2}{CD4 count for the second measurement in 2021.}
#'   \item{cd_2021_3}{CD4 count for the third measurement in 2021.}
#'   \item{cd_2022_1}{CD4 count for the first measurement in 2022.}
#'   \item{cd_2022_2}{CD4 count for the second measurement in 2022.}
#'   \item{cd_2022_3}{CD4 count for the third measurement in 2022.}
#'   \item{cd_2023_1}{CD4 count for the first measurement in 2023.}
#'   \item{cd_2023_2}{CD4 count for the second measurement in 2023.}
#'   \item{cd_2023_3}{CD4 count for the third measurement in 2023.}
#'   \item{cd_2024_1}{CD4 count for the first measurement in 2024.}
#'   \item{cd_2024_2}{CD4 count for the second measurement in 2024.}
#'   \item{cd_2024_3}{CD4 count for the third measurement in 2024.}
#' }
#'
#' @details .
#' CD4 counts are used to monitor immune system health in individuals with 
#' HIV. A lower CD4 count often indicates a weakened immune system, whereas 
#' higher counts suggest a stronger immune response. Some values are missing, 
#' indicating no measurement was taken for a particular patient at that time.
#'
#' @examples
#' # Load the dataset
#' data(cd_3)
#'
#' # Summarize CD4 counts for the year 2021
#' summary(cd_3[, c("cd_2021_1", "cd_2021_2", "cd_2021_3")])
#'
#' @source Clinical data from Hospital Vicente Guerrero, IMSS, HIV Clinic.
"cd_3"


#' Longitudinal Viral Load Values for HIV Patients (2018-2024)
#'
#' @description Contains longitudinal measurements of viral load for 176 
#' patients from 2018 to 2024. Viral load is a critical marker used to monitor 
#' the effectiveness of HIV treatment by measuring the amount of HIV RNA in the 
#' blood.
#'
#' @format A data frame with 176 rows and 18 variables:
#' \describe{
#'   \item{ID}{Unique identifier for each patient.}
#'   \item{vl_2018_1}{Viral load for the first measurement in 2018.}
#'   \item{vl_2018_2}{Viral load for the second measurement in 2018.}
#'   \item{vl_2019_1}{Viral load for the first measurement in 2019.}
#'   \item{vl_2019_2}{Viral load for the second measurement in 2019.}
#'   \item{vl_2020_1}{Viral load for the first measurement in 2020.}
#'   \item{vl_2021_1}{Viral load for the first measurement in 2021.}
#'   \item{vl_2021_2}{Viral load for the second measurement in 2021.}
#'   \item{vl_2021_3}{Viral load for the third measurement in 2021.}
#'   \item{vl_2022_1}{Viral load for the first measurement in 2022.}
#'   \item{vl_2022_2}{Viral load for the second measurement in 2022.}
#'   \item{vl_2022_3}{Viral load for the third measurement in 2022.}
#'   \item{vl_2023_1}{Viral load for the first measurement in 2023.}
#'   \item{vl_2023_2}{Viral load for the second measurement in 2023.}
#'   \item{vl_2023_3}{Viral load for the third measurement in 2023.}
#'   \item{vl_2024_1}{Viral load for the first measurement in 2024.}
#'   \item{vl_2024_2}{Viral load for the second measurement in 2024.}
#'   \item{vl_2024_3}{Viral load for the third measurement in 2024.}
#' }
#'
#' @details
#' The viral load measurements provide insight into the patient's response to 
#' antiretroviral therapy (ART). Lower viral load values, especially 
#' undetectable levels, indicate better control of the infection. Missing 
#' values indicate that no viral load measurement was available for that patient 
#' at that specific time.
#'
#' @examples
#' \dontrun{
#' # Load the dataset
#' data(vl_3)
#'
#' # Summarize viral loads for the year 2021
#' summary(vl_3[, c("cd_2021_1", "cd_2021_2", "cd_2021_3")])
#' }
#'
#' @source Clinical data from Hospital Vicente Guerrero, IMSS, HIV Clinic.
"vl_3"


#' Quantum Phenotype Interactions in HIV Model
#'
#' The `qphen` dataset contains 176 observations and 24 variables, representing classified phenotype interactions in a quantum game-theoretic model of HIV phenotypes.
#' The data includes CD4 and viral load differences, quantum game strategies, classification clusters, and tuberculosis/genoresistance indicators.
#'
#' @format A data frame with 176 rows and 24 variables:
#' \describe{
#'   \item{id}{(double) Unique identifier for each observation.}
#'   \item{vl_diff}{(double) Difference in viral load (log scale) between time points.}
#'   \item{cd_diff}{(double) Difference in CD4 count between time points.}
#'   \item{vlogs_diff_mean}{(double) Mean difference of viral loads across the dataset.}
#'   \item{cds_diff_mean}{(double) Mean difference of CD4 counts across the dataset.}
#'   \item{n}{(double) Number of cases in each interaction cluster.}
#'   \item{payoffs}{(double) Computed payoff for the phenotype interaction.}
#'   #'   \item{payoffs_b}{(double) Alternative computed payoff.}
#'   \item{nearest_payoff}{(double) Closest estimated payoff value.}
#'   \item{classification_2}{(double) Cluster assignment for phenotype interactions (second clustering method).}
#'   \item{classification_3}{(double) Cluster assignment for phenotype interactions (third clustering method).}
#'   \item{classification_4}{(double) Cluster assignment for phenotype interactions (fourth clustering method).}
#'   \item{phen_1}{(double) Phenotype type (`v` or `V`).}
#'   \item{str1_2}{(double) Strategy of the first phenotype using `X`, `T`, or `H` gate (binary encoding).}
#'   \item{str1_3}{(double) Alternative strategy of the first phenotype.}
#'   \item{str2_2}{(double) Strategy of the second phenotype using `H`, `Id`, `S`, `T`, `X`, `Y`, or `Z` gate (binary encoding).}
#'   \item{str2_3}{(double) Alternative strategy of the second phenotype.}
#'   \item{str2_4}{(double) Alternative strategy of the second phenotype.}
#'   \item{str2_5}{(double) Alternative strategy of the second phenotype.}
#'   \item{str2_6}{(double) Alternative strategy of the second phenotype.}
#'   \item{str2_7}{(double) Alternative strategy of the second phenotype.}
#'   \item{batch_1}{(double) Indicates whether predictions were made on full data or batch data.}
#'   \item{TB_1}{(double) Indicator for tuberculosis presence (1 = TB, 0 = no TB).}
#'   \item{GR_1}{(double) Indicator for genoresistance presence (1 = resistant, 0 = non-resistant).}
#' }
#'
#' @usage data(qphen)
#'
#' @keywords datasets
#'
#' @examples
#' data(qphen)
#' head(qphen)
"qphen"


#' Predictions for Longitudinal Viral Load Values for HIV Patients (2018-2024)
#'
#' @description Contains predictions of longitudinal viral load values for 176 
#' patients from 2018 to 2024. 
#'
#' @examples
#' data(preds)
#' head(preds)
#'
#' @source Clinical data from Hospital Vicente Guerrero, IMSS, HIV Clinic.
"preds"


#' Batched Predictions for Longitudinal Viral Load Values for HIV Patients (2018-2024)
#'
#' @description Contains batched predictions of longitudinal viral load values for 176 
#' patients from 2018 to 2024. 
#'
#' @examples
#' data(preds2)
#' head(preds2)
#'
#' @source Clinical data from Hospital Vicente Guerrero, IMSS, HIV Clinic.
"preds2"

Try the qvirus package in your browser

Any scripts or data that you put into this service are public.

qvirus documentation built on June 8, 2025, 10:06 a.m.