better_model | R Documentation |
Internal function to select the better model between hyperbolic regression and cubic regression.
better_model( statstable_pre, statstable_post_hyperbolic = NULL, statstable_post_cubic = NULL, selection_method = "SSE" )
statstable_pre |
A data.table object, containing the output of
|
statstable_post_hyperbolic |
A data.table object, containing
the output of |
statstable_post_cubic |
A data.table object, containing the output
of |
selection_method |
A character string. The method used to select the regression algorithm to correct the respective CpG site. This is by default the sum of squared errors ("SSE"). The second option is "RelError", which selects the regression method based on the theoretical relative error after correction. This metric is calculated by correcting the calibration data with both the hyperbolic regression and the cubic regression and using them again as input data to calculate the 'goodness of fit'-metrics. |
The function returns a data.table with 4 columns, the last column being named 'better_model', which indicates in a binary manner, if the hyperbolic model (better_model = 0) or the cubic model (better_model = 1) result in a 'better' 'SSE' or 'RelError' respectively.
# define list object to save all data rv <- list() rv$minmax <- TRUE rv$selection_method <- "RelError" rv$sample_locus_name <- "Test" rv$seed <- 1234 # define logfilename logfilename <- paste0(tempdir(), "/log.txt") # import experimental file exp_type_1 <- rBiasCorrection::example.data_experimental rv$fileimport_experimental <- exp_type_1$dat # import calibration file cal_type_1 <- rBiasCorrection::example.data_calibration rv$fileimport_calibration <- cal_type_1$dat rv$vec_cal <- cal_type_1$vec_cal # perform regression regression_results <- regression_utility( rv$fileimport_calibration, "Testlocus", locus_id = NULL, rv = rv, mode = NULL, logfilename, minmax = rv$minmax, seed = rv$seed ) # extract regression results rv$result_list <- regression_results$result_list # get regression statistics rv$reg_stats <- statistics_list( rv$result_list, minmax = rv$minmax ) # select the better model based on the sum of squared errrors ("SSE") rv$choices_list <- better_model( statstable_pre = rv$reg_stats, selection_method = "SSE" )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.