rEDM | R Documentation |
rEDM provides tools for data-driven time series analyses. It is based on reconstructing multivariate state space representations from uni or multivariate time series, then projecting state changes using various metrics applied to nearest neighbors.
rEDM is a Rcpp interface to the cppEDM library of Empirical Dynamic Modeling tools. Functionality includes:
Simplex projection (Sugihara and May 1990)
Sequential Locally Weighted Global Linear Maps (S-map) (Sugihara 1994)
Multivariate embeddings (Dixon et. al. 1999)
Convergent cross mapping (Sugihara et. al. 2012)
Multiview embedding (Ye and Sugihara 2016)
Main Functions:
Simplex
- simplex projection
SMap
- S-map projection
CCM
- convergent cross mapping
Multiview
- multiview forecasting
Helper Functions:
Embed
- time delay embedding
ComputeError
- forecast skill metrics
EmbedDimension
- optimal embedding dimension
PredictInterval
- optimal prediction interval
PredictNonlinear
- evaluate nonlinearity
Maintainer: Joseph Park
Authors: Joseph Park, Cameron Smith, Ethan Deyle, Erik Saberski, George Sugihara
Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741.
Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688) : 477-495.
Dixon, P. A., M. Milicich, and G. Sugihara, 1999. Episodic fluctuations in larval supply. Science 283:1528-1530.
Sugihara G., May R., Ye H., Hsieh C., Deyle E., Fogarty M., Munch S., 2012. Detecting Causality in Complex Ecosystems. Science 338:496-500.
Ye H., and G. Sugihara, 2016. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 353:922-925.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.