| ena.svd | R Documentation |
Computes a dimensional reduction of points in an ENA set using Singular Value Decomposition (SVD).
ena.svd(enaset, params)
enaset |
An |
params |
A list of parameters. Use |
This function computes the SVD of the points in the ENA set and returns either an ENARotationSet object or a list with the rotation matrix, codes, node positions, and eigenvalues, depending on params$as_object.
An ENARotationSet object or a list containing:
rotation |
The rotation matrix from SVD |
codes |
The code names used for the matrix |
node.positions |
(Currently NULL) Node positions |
eigenvalues |
The eigenvalues (squared singular values) from SVD |
data(RS.data)
codes <- c("Data", "Technical.Constraints", "Performance.Parameters",
"Client.and.Consultant.Requests", "Design.Reasoning",
"Collaboration")
units <- c("Condition", "UserName")
horizon <- c("Condition", "GroupName")
enaset <- RS.data |>
accumulate(units, codes, horizon) |>
model()
# SVD as list:
svd_result <- ena.svd(enaset, list(as_object = FALSE))
# SVD as ENARotationSet object:
svd_obj <- ena.svd(enaset, list(as_object = TRUE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.