Nothing
## ----opts, include = FALSE----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----install, eval = FALSE----------------------------------------------------
# install.packages("tidyverse")
# install.packages("rKolada")
## ----setup--------------------------------------------------------------------
library("rKolada")
## ----datapoint, echo = FALSE--------------------------------------------------
(n00945 <- rKolada:::n00945)
## ----datapoint_mock, eval = FALSE---------------------------------------------
# n00945 <- get_values(
# kpi = "N00945",
# municipality = c("0180", "1480", "1280"),
# period = 1970:2020
# )
#
# n00945
## ----kpi_df, echo = FALSE-----------------------------------------------------
kpi_df <- rKolada:::kpi_df
head(kpi_df, n = 10)
## ----kpi_df_mock, eval = FALSE------------------------------------------------
# # Download all KPI metadata as a tibble (kpi_df)
# kpi_df <- get_kpi()
#
# head(kpi_df, n = 10)
## ----kpi_filter---------------------------------------------------------------
# Search for KPIs with the term "BRP" in their description or title
kpi_filter <- kpi_df %>% kpi_search("skola", column = c("description", "title"))
kpi_filter
## ----munic_g, echo = FALSE----------------------------------------------------
(munic_g <- rKolada:::munic_g)
## ----munic_g_mock, eval = FALSE-----------------------------------------------
# # Search for municipality groups containing the name "Arboga"
# munic_g <- get_municipality_groups()
## ----arboga_groups------------------------------------------------------------
arboga_groups <- munic_g %>% municipality_grp_search("Arboga")
arboga_groups
## ----describe_example, results='asis'-----------------------------------------
kpi_filter %>% kpi_describe(max_n = 2, format = "md", heading_level = 4)
## ----keywords_example---------------------------------------------------------
# Add keywords to a KPI table
kpis_with_keywords <- kpi_filter %>% kpi_bind_keywords(n = 4)
# count keywords
kpis_with_keywords %>%
tidyr::pivot_longer(dplyr::starts_with("keyword"), values_to = "keyword") %>%
dplyr::count(keyword, sort = TRUE)
## -----------------------------------------------------------------------------
# Top 10 rows of the table
kpi_filter %>% dplyr::slice(1:10)
# Top 10 rows of the table, with non-distinct data removed
kpi_filter %>% dplyr::slice(1:10) %>% kpi_minimize()
## ----echo = FALSE-------------------------------------------------------------
kpi_filter <- rKolada:::kpi_filter
munic_grp_filter <- rKolada:::munic_grp_filter
arboga <- rKolada:::arboga
grp_data <- rKolada:::grp_data
## ----eval = FALSE-------------------------------------------------------------
# # Get KPIs describing Gross Regional Product of municipalities
# kpi_filter <- get_kpi() %>%
# kpi_search("BRP") %>%
# kpi_search("K", column = "municipality_type")
# # Creates a table with two rows
#
# # Get a suitable group of municipalities
# munic_grp_filter <- get_municipality_groups() %>%
# municipality_grp_search("Liknande kommuner socioekonomi, Arboga")
# # Creates a table with one group of 7 municipalities
#
# # Also include Arboga itself
# arboga <- get_municipality() %>% municipality_search("Arboga")
#
# # Get data
# grp_data <- get_values(
# kpi = kpi_extract_ids(kpi_filter),
# municipality = c(
# municipality_grp_extract_ids(munic_grp_filter),
# municipality_extract_ids(arboga)
# )
# )
## -----------------------------------------------------------------------------
# Visualize results
library("ggplot2")
ggplot(grp_data, aes(year, value, color = municipality)) +
geom_line(aes(linetype = municipality)) +
facet_grid(kpi ~ ., scales = "free") +
labs(
title = "Gross Regional Product per capita 2012-2018",
subtitle = "Swedish municipalities similar to Arboga",
caption = values_legend(grp_data, kpi_filter)
) +
scale_color_viridis_d(option = "B") +
scale_y_continuous(labels = scales::comma)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.