Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(rMOST)
## -----------------------------------------------------------------------------
## Input ##
# Predictor intercorrelation matrix
Rx <- matrix(c( 1, .37, .51, .16, .25,
.37, 1, .03, .31, .02,
.51, .03, 1, .13, .34,
.16, .31, .13, 1,-.02,
.25, .02, .34,-.02, 1), 5, 5)
# Criterion validity of the predictors
Rxy1 <- c(.32, .52, .22, .48, .20)
Rxy2 <- c(.30, .35, .15, .25, .10)
Rxy3 <- c(.15, .25, .30, .35, .10)
# Overall selection ratio
sr <- 0.15
# Proportion of minority applicants
prop_b <- 1/8 # Proportion of Black applicants (i.e., (# of Black applicants)/(# of all applicants))
prop_h <- 1/6 # Proportion of Hispanic applicants
# Predictor subgroup d
d_wb <- c(.39, .72, -.09, .39, .04) # White-Black subgroup difference
d_wh <- c(.17, .79, .08, .04, -.14) # White-Hispanic subgroup difference
## -----------------------------------------------------------------------------
# Example: 3 non-adverse impact objectives
out_3C = MOST(optProb = "3C",
# predictor intercorrelations
Rx = Rx,
# predictor - objective relations
Rxy1 = Rxy1, # non-AI objective 1
Rxy2 = Rxy2, # non-AI objective 2
Rxy3 = Rxy3, # non-AI objective 3
Spac = 10)
# The first few solutions
head(out_3C)
## -----------------------------------------------------------------------------
# Example: 2 non-adverse impact objectives & 1 adverse impact objective
out_2C_1AI = MOST(optProb = "2C_1AI",
# predictor intercorrelations
Rx = Rx,
# predictor - objective relations
Rxy1 = Rxy1, # non-AI objective 1
Rxy2 = Rxy2, # non-AI objective 2
d1 = d_wb, # subgroup difference for minority 1
# selection ratio
sr = sr,
# proportion of minority
prop1 = prop_b, # minority 1
Spac = 10)
# The first few solutions
head(out_2C_1AI)
## -----------------------------------------------------------------------------
# Example: 1 non-adverse impact objective & 2 adverse impact objectives
out_1C_2AI = MOST(optProb = "1C_2AI",
# predictor intercorrelations
Rx = Rx,
# predictor - objective relations
Rxy1 = Rxy1, # non-AI objective 1
d1 = d_wb, # subgroup difference for minority 1
d2 = d_wh, # subgroup difference for minority 2
# selection ratio
sr = sr,
# proportion of minority
prop1 = prop_b, # minority 1
prop2 = prop_h, # minority 2
Spac = 10)
# The first few solutions
head(out_1C_2AI)
## -----------------------------------------------------------------------------
out_3C[1, 6:ncol(out_3C)]
## -----------------------------------------------------------------------------
out_3C[1, 3:5]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.