Nothing
#' Random Wishart Distributed Matrices
#'
#' Generate \code{n} random matrices, distributed according to the Wishart distribution with parameters \code{Sigma} and \code{df}, W_p(Sigma, df).
#'
#' @inheritParams base::replicate
#' @inheritParams stats::rWishart
#' @param covariance logical on whether a covariance matrix should be generated
#'
#' @return A numeric array of dimension \code{p * p * n}, where each array is a positive semidefinite matrix, a realization of the Wishart distribution W_p(Sigma, df)
#' @export
#'
#' @details If X_1, ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma,
#' the distribution of M = X'X is W_p(Sigma, m).
#'
#' @importFrom Matrix rankMatrix
#'
#' @examples rWishart(2, 5, diag(1, 20))
rWishart <- function(n, df, Sigma, covariance = FALSE, simplify = "array"){
if(rankMatrix(Sigma) < ncol(Sigma)){
ls <- rSingularWishart(n, df, Sigma, covariance, simplify)
}else{
if(df >= ncol(Sigma)){
if(round(df) - df != 0){
ls <- rFractionalWishart(n, df, Sigma, covariance, simplify)
}else{
ls <- rNonsingularWishart(n, df, Sigma, covariance, simplify)
}
}else{
ls <- rPsuedoWishart(n, df, Sigma, covariance, simplify)
}
}
ls
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.