Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = '70%'
)
## ----Installing rYWAASB package-----------------------------------------------
if(!require('rYWAASB')){
install.packages('rYWAASB') # call the package
}
library('rYWAASB')
## ----setup,warning=FALSE,message=FALSE----------------------------------------
## For graphical displays
library(metan)
library(ggplot2)
library(graphics)
library(factoextra)
library(FactoMineR)
## -----------------------------------------------------------------------------
waasb_model <-
waasb(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = everything(),
random = "gen", #Default
verbose = TRUE) #Default
data <- waasb_model$GY$model
print(data)
## ----echo = TRUE, fig.height = 14, fig.width = 18, fig.align = "center", message=F, warning=F----
plot_scores(waasb_model, type = 3)
## ----Showing the maize dataset------------------------------------------------
data(maize)
head(maize)
## ----apply package by ranking the genotypes for maize data--------------------
data(maize)
ranki(maize) # or: ranki(maize, lowt = FALSE)
## ----apply package by ranking the genotypes for dm data-----------------------
data(dm)
ranki(dm, lowt = TRUE)
## ----echo = TRUE, fig.height = 14, fig.width = 20, fig.align = "center", message=F, warning=F----
data(maize)
bar_plot1(maize) # or: bar_plot1(maize, lowt = FALSE)
## ----echo = TRUE, fig.height = 14, fig.width = 20, fig.align = "center", message=F, warning=F----
data(dm)
bar_plot1(dm, lowt = TRUE)
## ----echo = TRUE, fig.height = 14, fig.width = 20, fig.align = "center", message=F, warning=F----
data(maize)
bar_plot2(maize) # or: bar_plot2(maize, lowt = FALSE, verbose = FALSE)
## ----echo = TRUE, fig.height = 14, fig.width = 20, fig.align = "center", message=F, warning=F----
data(maize)
PCA_biplot(maize) # or: PCA_biplot(maize, lowt = FALSE)
## ----echo = TRUE, fig.height = 14, fig.width = 20, fig.align = "center", message=F, warning=F----
data(dm)
PCA_biplot(dm, lowt = TRUE)
## ----echo = TRUE, fig.height = 15, fig.width = 30, fig.align = "center", message=F, warning=F----
data(maize)
maize <- as.data.frame(maize)
row.names(maize) <- maize[, 1]
maize[, 1] = NULL
GEN <- row.names(maize)
maize <- scale(maize)
nbclust(maize, verbose = FALSE)
# Perform bootstrap or jackknife clustering by shipunov package.
# The examples should be run in the console manually due to
# problems occurs in the ORPHANED package "shipunov".
#
# library(shipunov) # recalling the shipunov package
# 1- Bootstrap clustering:
# data.jb <- Jclust(maize,
# method.d = "euclidean",
# method.c = "average", n.cl = 2,
# bootstrap = TRUE)
#
# plot.Jclust(data.jb, top=TRUE, lab.pos=1,
# lab.offset=1, lab.col=2, lab.font=2)
# Fence(data.jb$hclust, GEN)
#
# data.jb <- Jclust(maize,
# method.d = "euclidean",
# method.c = "ward.D", n.cl = 2,
# bootstrap = TRUE)
#
# plot.Jclust(data.jb, top=TRUE, lab.pos=1,
# lab.offset=1, lab.col=2, lab.font=2)
# Fence(data.jb$hclust, GEN)
#
#
# if(verbose = TRUE):
# cat("\nnumber of iterations:\n", data.jb$iter, "\n")
#
# For "bootstrap":
# data.jb$mat <- as.matrix((data.jb$mat))
# cat("\nmatrix of results:\n", data.jb$mat, "\n")
# cat("clustering info, by eucledean distance measure:\n")
# print(data.jb$hclust)
# cat("groups:\n", data.jb$gr, "\n")
# cat("\nsupport values:\n", data.jb$supp, "\n")
# cat("\nnumber of clusters used:\n", data.jb$n.cl, "\n")
#
# 2- Jackknife clustering:
# data.jb <- Bclust(maize,
# method.d = "euclidean", method.c = "average",
# bootstrap = FALSE)
# plot(data.jb)
#
# data.jb <- Bclust(maize,
# method.d = "euclidean", method.c = "ward.D",
# bootstrap = FALSE)
# plot(data.jb)
#
# if(verbose = TRUE):
# For"jackknife":
# cat("Consensus:\n", data.jb$consensus, "\n")
# cat("Vlaues:\n", data.jb$values, "\n")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.