Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(rankinma)
## ----echo = FALSE, out.width = "10%"------------------------------------------
knitr::include_graphics("rankinma_logo.png")
## ----eval = FALSE-------------------------------------------------------------
# library(rankinma)
## ----setup, echo = FALSE, warning = FALSE, message = FALSE--------------------
library(rankinma)
library(netmeta)
## ----eval = FALSE-------------------------------------------------------------
# library(rankinma)
# library(netmeta)
# data(Senn2013)
# nmaOutput <- netmeta(TE,
# seTE,
# treat1,
# treat2,
# studlab,
# data = Senn2013,
# sm = "SMD")
## ----eval = FALSE-------------------------------------------------------------
# dataMetrics <- GetMetrics(nmaOutput,
# outcome = "HbA1c.random",
# prefer = "small",
# metrics = "Probabilities",
# model = "random",
# simt = 1000)
## ----eval = FALSE-------------------------------------------------------------
# dataRankinma <- SetMetrics(dataMetrics,
# tx = tx,
# outcome = outcome,
# metrics.name = "Probabilities")
## ----eval = FALSE-------------------------------------------------------------
# PlotLine(data = dataRankinma,
# compo = TRUE)
## ----eval = TRUE, echo = FALSE, warning = FALSE, results = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 1**. Composite line chart for probabilities of treatments on each rank.", fig.height = 5, fig.width = 7, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
dataMetrics <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "Probabilities",
model = "random",
simt = 1000)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics.name = "Probabilities")
PlotLine(data = dataRankinma,
compo = TRUE)
## ----eval = FALSE-------------------------------------------------------------
# PlotBar(data = dataRankinma,
# accum = TRUE)
## ----eval = TRUE, echo = FALSE, warning = FALSE, results = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 2**. Accumulative bar chart for probabilities of treatments on each rank.", fig.height = 5, fig.width = 7, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
dataMetrics <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "Probabilities",
model = "random",
simt = 1000)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics.name = "Probabilities")
PlotBar(data = dataRankinma,
accum = TRUE)
## ----eval = FALSE-------------------------------------------------------------
# library(rankinma)
# library(netmeta)
# data(Senn2013)
# nmaOutput <- netmeta(TE,
# seTE,
# treat1,
# treat2,
# studlab,
# data = Senn2013,
# sm = "SMD")
## ----eval = FALSE-------------------------------------------------------------
# nmaRandom <- GetMetrics(nmaOutput,
# outcome = "HbA1c.random",
# prefer = "small",
# metrics = "SUCRA",
# model = "random",
# simt = 1000)
# nmaCommon <- GetMetrics(nmaOutput,
# outcome = "HbA1c.common",
# prefer = "small",
# metrics = "SUCRA",
# model = "common",
# simt = 1000)
## ----eval = FALSE-------------------------------------------------------------
# nmaRandom <- GetMetrics(nmaOutput,
# outcome = "HbA1c.random",
# prefer = "small",
# metrics = "P-score",
# model = "random",
# simt = 1000)
# nmaCommon <- GetMetrics(nmaOutput,
# outcome = "HbA1c.common",
# prefer = "small",
# metrics = "P-score",
# model = "common",
# simt = 1000)
## ----eval = FALSE-------------------------------------------------------------
# nmaRandom <- GetMetrics(nmaOutput,
# outcome = "HbA1c.random",
# prefer = "small",
# metrics = "P-best",
# model = "random",
# simt = 1000)
# nmaCommon <- GetMetrics(nmaOutput,
# outcome = "HbA1c.common",
# prefer = "small",
# metrics = "P-best",
# model = "common",
# simt = 1000)
## ----eval = FALSE-------------------------------------------------------------
# dataMetrics <- rbind(nmaRandom, nmaCommon)
## ----eval = FALSE-------------------------------------------------------------
# dataRankinma <- (dataMetrics,
# tx = tx,
# outcome = outcome,
# metrics = SUCRA,
# metrics.name = "SUCRA")
## ----eval = FALSE-------------------------------------------------------------
# dataRankinma <- (dataMetrics,
# tx = tx,
# outcome = outcome,
# metrics = P.score,
# metrics.name = "P-score")
## ----eval = FALSE-------------------------------------------------------------
# dataRankinma <- (dataMetrics,
# tx = tx,
# outcome = outcome,
# metrics = P.best,
# metrics.name = "P-best")
## ----eval = FALSE-------------------------------------------------------------
# PlotBeads(data = dataRankinma)
## ----eval = TRUE, echo = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 3A**. Beading plot for SUCRA on two outcomes", fig.height = 6, fig.width = 8, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
nmaRandom <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "SUCRA",
model = "random",
simt = 1000)
nmaCommon <- GetMetrics(nmaOutput,
outcome = "HbA1c.common",
prefer = "small",
metrics = "SUCRA",
model = "common",
simt = 1000)
dataMetrics <- rbind(nmaRandom, nmaCommon)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics = SUCRA,
metrics.name = "SUCRA")
PlotBeads(data = dataRankinma)
## ----eval = FALSE-------------------------------------------------------------
# PlotBeads(data = dataRankinma,
# scaleX = "Rank",
# txtValue = "Effects")
## ----eval = TRUE, echo = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 3A**. Beading plot for SUCRA on two outcomes", fig.height = 6, fig.width = 8, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
nmaRandom <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "P-score",
model = "random",
simt = 1000)
nmaCommon <- GetMetrics(nmaOutput,
outcome = "HbA1c.common",
prefer = "small",
metrics = "P-score",
model = "common",
simt = 1000)
dataMetrics <- rbind(nmaRandom, nmaCommon)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics = P.score,
metrics.name = "P-score")
PlotBeads(data = dataRankinma,
scaleX = "Rank",
txtValue = "Effects")
## ----eval = FALSE-------------------------------------------------------------
# PlotBeads(data = dataRankinma,
# lgcBlind = TRUE)
## ----eval = TRUE, echo = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 3C**. Colorblind friendly beading plot for P-score on two outcomes", fig.height = 6, fig.width = 8, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
nmaRandom <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "P-best",
model = "random",
simt = 1000)
nmaCommon <- GetMetrics(nmaOutput,
outcome = "HbA1c.common",
prefer = "small",
metrics = "P-best",
model = "common",
simt = 1000)
dataMetrics <- rbind(nmaRandom, nmaCommon)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics = P.best,
metrics.name = "P-best")
PlotBeads(data = dataRankinma,
lgcBlind = TRUE)
## ----eval = FALSE-------------------------------------------------------------
# PlotSpie(data = dataRankinma)
## ----eval = TRUE, echo = FALSE, message = FALSE, results = "hide", fig.cap = "**Figure 3B**. Spie plot for P-score on two outcomes", fig.height = 6, fig.width = 8, fig.align = "center", out.width = "90%"----
data(Senn2013)
nmaOutput <- netmeta(TE,
seTE,
treat1,
treat2,
studlab,
data = Senn2013,
sm = "SMD")
nmaRandom <- GetMetrics(nmaOutput,
outcome = "HbA1c.random",
prefer = "small",
metrics = "P-score",
model = "random",
simt = 1000)
nmaCommon <- GetMetrics(nmaOutput,
outcome = "HbA1c.common",
prefer = "small",
metrics = "P-score",
model = "common",
simt = 1000)
dataMetrics <- rbind(nmaRandom, nmaCommon)
dataRankinma <- SetMetrics(dataMetrics,
tx = tx,
outcome = outcome,
metrics = P.score,
metrics.name = "P-score")
PlotSpie(data = dataRankinma)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.