Nothing
## ---- include = FALSE---------------------------------------------------------
NOT_CRAN <- interactive() || identical(tolower(Sys.getenv("NOT_CRAN")), "true") # nolint
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval = FALSE------------------------------------------------------------
# install.packages("rbi")
## ---- eval = FALSE------------------------------------------------------------
# remotes::install_github("sbfnk/rbi")
## ---- eval = FALSE------------------------------------------------------------
# library("rbi")
## ---- echo = FALSE------------------------------------------------------------
suppressPackageStartupMessages(library("rbi"))
## -----------------------------------------------------------------------------
model_file <- system.file(package = "rbi", "SIR.bi")
sir_model <- bi_model(model_file) # load model
## -----------------------------------------------------------------------------
sir_model
## -----------------------------------------------------------------------------
sir_model[35:38]
## -----------------------------------------------------------------------------
get_block(sir_model, "parameter")
## -----------------------------------------------------------------------------
var_names(sir_model, type = "state")
## -----------------------------------------------------------------------------
det_sir_model <- fix(sir_model, n_transmission = 0, n_recovery = 0)
## ---- eval = NOT_CRAN---------------------------------------------------------
# set.seed(1001912)
# sir_data <- generate_dataset(sir_model, end_time = 16 * 7, noutputs = 16)
## ---- eval = NOT_CRAN---------------------------------------------------------
# sir_data
## ---- eval = NOT_CRAN---------------------------------------------------------
# dataset <- bi_read(sir_data)
## ---- eval = NOT_CRAN---------------------------------------------------------
# names(dataset)
# dataset$p_R0
# dataset$Incidence
## ---- eval = NOT_CRAN---------------------------------------------------------
# plot(dataset$Incidence$time, dataset$Incidence$value)
# lines(dataset$Incidence$time, dataset$Incidence$value)
## ---- eval = NOT_CRAN---------------------------------------------------------
# class(sir_data)
## -----------------------------------------------------------------------------
bi <- libbi(sir_model)
## -----------------------------------------------------------------------------
class(bi)
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_prior <- sample(
# bi, target = "prior", nsamples = 1000, end_time = 16 * 7, noutputs = 16
# )
## ---- eval = FALSE------------------------------------------------------------
# bi_prior <- sample(bi_prior)
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_prior
## ---- eval = NOT_CRAN---------------------------------------------------------
# str(bi_prior)
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_prior$options
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_prior$output_file_name
## ---- eval = NOT_CRAN---------------------------------------------------------
# prior <- bi_read(bi_prior$output_file_name)
## ---- eval = NOT_CRAN---------------------------------------------------------
# prior <- bi_read(bi_prior)
## ---- eval = NOT_CRAN---------------------------------------------------------
# str(prior)
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi <- sample(bi_prior, target = "posterior", nparticles = 32, obs = sir_data)
## ---- eval = NOT_CRAN---------------------------------------------------------
# df <- data.frame(
# time = c(0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112),
# value = c(1, 6, 2, 26, 99, 57, 78, 57, 15, 9, 4, 1, 1, 1, 0, 2, 0)
# )
# bi_df <- sample(
# bi_prior, target = "posterior", nparticles = 32, obs = list(Incidence = df)
# )
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_contents(bi)
# posterior <- bi_read(bi)
# str(posterior)
## ---- eval = NOT_CRAN---------------------------------------------------------
# summary(bi)
## ---- eval = NOT_CRAN, results = "hide"---------------------------------------
# summary(bi, type = "state")
## ---- eval = NOT_CRAN, results = "hide"---------------------------------------
# extract_sample(bi, 314)
## ---- eval = NOT_CRAN---------------------------------------------------------
# library("coda")
# traces <- mcmc(get_traces(bi))
## ---- eval = NOT_CRAN, fig.width = 8, fig.height = 8--------------------------
# plot(traces)
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_read(sir_data, type = "param")
## ---- eval = NOT_CRAN---------------------------------------------------------
# pred_bi <- predict(
# bi, start_time = 0, end_time = 20 * 7, output_every = 7,
# with = c("transform-obs-to-state")
# )
## ---- eval = NOT_CRAN---------------------------------------------------------
# obs_bi <- sample_obs(bi)
## ---- eval = NOT_CRAN---------------------------------------------------------
# summary(obs_bi, type = "obs")
# dataset$Incidence
## ---- eval = NOT_CRAN---------------------------------------------------------
# bi_filtered <- filter(bi)
## ---- eval = NOT_CRAN---------------------------------------------------------
# ps <- summary(pred_bi, type = "obs")
#
# library("ggplot2")
# ggplot(ps, aes(x = time)) +
# geom_line(aes(y = Median)) +
# geom_ribbon(aes(ymin = `1st Qu.`, ymax = `3rd Qu.`), alpha = 0.5) +
# geom_point(aes(y = value), dataset$Incidence, color = "darkred") +
# ylab("cases")
## ---- eval = NOT_CRAN---------------------------------------------------------
# os <- summary(obs_bi, type = "obs")
#
# ggplot(os, aes(x = time)) +
# geom_line(aes(y = Median)) +
# geom_ribbon(aes(ymin = `1st Qu.`, ymax = `3rd Qu.`), alpha = 0.5) +
# geom_point(aes(y = value), dataset$Incidence, color = "darkred") +
# ylab("cases")
## ---- eval = NOT_CRAN---------------------------------------------------------
# save_libbi(bi, "bi.rds")
# bi <- read_libbi("bi.rds")
# bi
## ---- eval = NOT_CRAN--------------------------------------------------------
# pz_run_output <- bi_read(system.file(package = "rbi", "example_output.nc"))
# pz_model_file <- system.file(package = "rbi", "PZ.bi")
# pz_posterior <- attach_data(libbi(pz_model_file), "output", pz_run_output)
# traces <- mcmc(get_traces(pz_posterior))
# a <- 1 - rejectionRate(traces)
# a
## ---- eval = FALSE------------------------------------------------------------
# rewrite(sir_model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.