Nothing
#' Extract most recent BMI score relative to an index date.
#'
#' @description
#' Extract most recent BMI score relative to an index date.
#'
#' @param cohort Cohort to extract age for.
#' @param varname Optional name for variable in output dataset.
#' @param codelist_bmi Name of codelist (stored on hard disk in "codelists/analysis/") for BMI to query the database with.
#' @param codelist_weight Name of codelist (stored on hard disk in "codelists/analysis/") for weight to query the database with.
#' @param codelist_height Name of codelist (stored on hard disk in "codelists/analysis/") for height to query the database with.
#' @param codelist_bmi_vector Vector of codes for BMI to query the database with.
#' @param codelist_weight_vector Vector of codes for weight to query the database with.
#' @param codelist_height_vector Vector of codes for height to query the database with.
#' @param indexdt Name of variable which defines index date in `cohort`.
#' @param t Number of days after index date at which to calculate variable.
#' @param t_varname Whether to add `t` to `varname`.
#' @param time_prev Number of days prior to index date to look for codes.
#' @param time_post Number of days after index date to look for codes.
#' @param lower_bound Lower bound for returned values.
#' @param upper_bound Upper bound for returned values.
#' @param db_open An open SQLite database connection created using RSQLite::dbConnect, to be queried.
#' @param db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.
#' @param db_filepath Full filepath to SQLITE database on hard disk, to be queried.
#' @param out_save_disk If `TRUE` will attempt to save outputted data frame to directory "data/extraction/".
#' @param out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.
#' @param out_filepath Full filepath and filename to save outputted data frame into.
#' @param return_output If `TRUE` will return outputted data frame into R workspace.
#'
#' @details BMI can either be identified through a directly recorded BMI score, or calculated via height and weight scores.
#' Full details on the algorithm for extracting BMI are given in the vignette: Details-on-algorithms-for-extracting-specific-variables.
#' This vignette can be viewed by running \code{vignette("help", package = "rcprd")}.
#'
#' Specifying `db` requires a specific underlying directory structure. The SQLite database must be stored in "data/sql/" relative to the working directory.
#' If the SQLite database is accessed through `db`, the connection will be opened and then closed after the query is complete. The same is true if
#' the database is accessed through `db_filepath`. A connection to the SQLite database can also be opened manually using `RSQLite::dbConnect`, and then
#' using the object as input to parameter `db_open`. After wards, the connection must be closed manually using `RSQLite::dbDisconnect`. If `db_open` is specified, this will take precedence over `db` or `db_filepath`.
#'
#' If `out_save_disk = TRUE`, the data frame will automatically be written to an .rds file in a subdirectory "data/extraction/" of the working directory.
#' This directory structure must be created in advance. `out_subdir` can be used to specify subdirectories within "data/extraction/". These options will use a default naming convetion. This can be overwritten
#' using `out_filepath` to manually specify the location on the hard disk to save. Alternatively, return the data frame into the R workspace using `return_output = TRUE`
#' and then save onto the hard disk manually.
#'
#' Specifying the non-vector type codelists requires a specific underlying directory structure. The codelist on the hard disk must be stored in "codelists/analysis/" relative
#' to the working directory, must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the chosen `tab`. The input
#' to these variables should just be the name of the files (excluding the suffix .csv). The codelists can also be read in manually, and supplied as a
#' character vector. This option will take precedence over the codelists stored on the hard disk if both are specified.
#'
#' @returns A data frame with variable BMI.
#'
#' @examples
#'
#' ## Connect
#' aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))
#'
#' ## Create SQLite database using cprd_extract
#' cprd_extract(aurum_extract,
#' filepath = system.file("aurum_data", package = "rcprd"),
#' filetype = "observation", use_set = FALSE)
#'
#' ## Define cohort and add index date
#' pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
#' pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")
#'
#' ## Extract most recent BMI prior to index date
#' extract_bmi(cohort = pat,
#' codelist_bmi_vector = "498521000006119",
#' codelist_weight_vector = "401539014",
#' codelist_height_vector = "13483031000006114",
#' indexdt = "indexdt",
#' time_prev = Inf,
#' db_open = aurum_extract,
#' return_output = TRUE)
#'
#' ## clean up
#' RSQLite::dbDisconnect(aurum_extract)
#' unlink(file.path(tempdir(), "temp.sqlite"))
#'
#' @export
extract_bmi <- function(cohort,
varname = NULL,
codelist_bmi = NULL,
codelist_weight = NULL,
codelist_height = NULL,
codelist_bmi_vector = NULL,
codelist_weight_vector = NULL,
codelist_height_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = 365.25*5,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE){
# varname = NULL
# cohort = cohortZ
# codelist_bmi = "edh_bmi_medcodeid"
# codelist_height = "height_medcodeid"
# codelist_weight = "weight_medcodeid"
# indexdt = "fup_start"
# t = 0
# t_varname = TRUE
# time_prev = round(365.25*5)
# time_post = 0
# lower_bound = 18
# upper_bound = 47
# db = "aurum_small"
# db_filepath = NULL
# out_save_disk = FALSE
# out_filepath = NULL
# out_subdir = NULL
# return_output = TRUE
#
#
# codelist_bmi_vector = 498521000006119
# codelist_weight_vector = 401539014
# codelist_height_vector = 13483031000006114
# indexdt = "indexdt"
# time_prev = Inf
# time_post = Inf
# db_open = aurum_extract
# return_output = TRUE
### ADD TEST TO ENSURE THEY SPECIFY TIME FRAME
### Preparation
## Add index date variable to cohort and change indexdt based on t
cohort <- prep_cohort(cohort, indexdt, t)
## Assign variable name if unspecified
if (is.null(varname)){
varname <- "bmi"
}
## Change variable name based off time point specified for extraction
varname <- prep_varname(varname, t, t_varname)
## Create named subdirectory if it doesn't exist
prep_subdir(out_subdir)
### Need to run three database queries, one for BMI, one for height and one for weight
### BMI
db.qry.bmi <- db_query(codelist_bmi,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_bmi_vector)
variable_dat.bmi <- combine_query(db_query = db.qry.bmi,
cohort = cohort,
query_type = "test",
time_prev = time_prev,
time_post = time_post,
lower_bound = lower_bound,
upper_bound = upper_bound)
### Height
db.qry.height <- db_query(codelist_height,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_height_vector)
variable_dat.height <- combine_query(db_query = db.qry.height,
cohort = cohort,
query_type = "test",
time_prev = time_prev,
time_post = time_post)
### Weight
db.qry.weight <- db_query(codelist_weight,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_weight_vector)
variable_dat.weight <- combine_query(db_query = db.qry.weight,
cohort = cohort,
query_type = "test",
time_prev = time_prev,
time_post = time_post)
### For the height query, we need to rescale those without numunitid = 173, 432 or 3202 from cm to m
variable_dat.height <- dplyr::mutate(variable_dat.height, value = dplyr::case_when(numunitid %in% c(173, 432, 3202) ~ value,
!(numunitid %in% c(173, 432, 3202)) ~ value/100))
### For the weight query, we need to rescale those with numunitid = 1691, 2318, 2997 or 6265 from stone to kg
variable_dat.weight <- dplyr::mutate(variable_dat.weight, value = dplyr::case_when(numunitid %in% c(1691, 2318, 2997, 6265) ~ 6.35029*value,
!(numunitid %in% c(1691, 2318, 2997, 6265)) ~ value))
### Calculate bmi's estimated from height/weight
## Merge height and weight datasets
variable_dat.manual <- merge(variable_dat.weight, variable_dat.height, by.x = "patid", by.y = "patid")
## Calculate bmi
variable_dat.manual$value <- variable_dat.manual$value.x/(variable_dat.manual$value.y)^2
## Take furthest away date
variable_dat.manual$obsdate <- pmin(variable_dat.manual$obsdate.x, variable_dat.manual$obsdate.y)
## Remove values outside of range
### If values are missing, < lower_bound or > upper_bound then delete
if (!is.null(lower_bound) & !is.null(upper_bound)){
variable_dat.manual <- variable_dat.manual[value > lower_bound & value < upper_bound]
} else if (is.null(lower_bound) & !is.null(upper_bound)){
variable_dat.manual <- variable_dat.manual[value < upper_bound]
} else if (!is.null(lower_bound) & is.null(upper_bound)){
variable_dat.manual <- variable_dat.manual[value > lower_bound]
}
variable_dat.manual <- variable_dat.manual[,c("patid", "value", "obsdate")]
rm(variable_dat.height, variable_dat.weight)
### Merge the two
variable_dat <- merge(variable_dat.bmi, variable_dat.manual, by.x = "patid", by.y = "patid", all.x = TRUE, all.y = TRUE)
### Take most recent of the two
variable_dat <- dplyr::mutate(variable_dat, bmi = dplyr::case_when(is.na(value.x) & !is.na(value.y) ~ value.y,
!is.na(value.x) & is.na(value.y) ~ value.x,
!is.na(value.x) & !is.na(value.y) & obsdate.y > obsdate.x ~ value.y,
!is.na(value.x) & !is.na(value.y) & obsdate.y <= obsdate.x ~ value.x))
### Create dataframe of cohort and the variable of interest
variable_dat <- merge(dplyr::select(cohort, patid), variable_dat, by.x = "patid", by.y = "patid", all.x = TRUE)
### Reduce to variables of interest
variable_dat <- variable_dat[,c("patid", "bmi")]
### Change name of variable to varname
colnames(variable_dat)[colnames(variable_dat) == "bmi"] <- varname
### Implement output
implement_output(variable_dat, varname, out_save_disk, out_subdir, out_filepath, return_output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.