Nothing
#' Extract smoking status prior to index date.
#'
#' @description
#' Extract smoking status prior to index date.
#'
#' @param cohort Cohort to extract age for.
#' @param varname Optional name for variable in output dataset.
#' @param codelist_non Name of codelist (stored on hard disk in "codelists/analysis/") for non-smoker to query the database with.
#' @param codelist_ex Name of codelist (stored on hard disk in "codelists/analysis/") for ex-smoker to query the database with.
#' @param codelist_light Name of codelist (stored on hard disk in "codelists/analysis/") for light smoker to query the database with.
#' @param codelist_mod Name of codelist (stored on hard disk in "codelists/analysis/") for moderate smoker to query the database with.
#' @param codelist_heavy Name of codelist (stored on hard disk in "codelists/analysis/") for heavy smoker to query the database with.
#' @param codelist_non_vector Vector of codes for non-smoker to query the database with.
#' @param codelist_ex_vector Vector of codes for ex-smoker to query the database with.
#' @param codelist_light_vector Vector of codes for light smoker to query the database with.
#' @param codelist_mod_vector Vector of codes for moderate smoker to query the database with.
#' @param codelist_heavy_vector Vector of codes for heavy smoker to query the database with.
#' @param indexdt Name of variable which defines index date in `cohort`.
#' @param t Number of days after index date at which to calculate variable.
#' @param t_varname Whether to add `t` to `varname`.
#' @param db_open An open SQLite database connection created using RSQLite::dbConnect, to be queried.
#' @param db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.
#' @param db_filepath Full filepath to SQLITE database on hard disk, to be queried.
#' @param out_save_disk If `TRUE` will attempt to save outputted data frame to directory "data/extraction/".
#' @param out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.
#' @param out_filepath Full filepath and filename to save outputted data frame into.
#' @param return_output If `TRUE` will return outputted data frame into R workspace.
#'
#' @details Returns the most recent value of smoking status. If the most recently recorded observation of smoking status is non-smoker, but the individual
#' has a history of smoking identified through the medical record, the outputted value of smoking status will be ex-smoker.
#' Full details on the algorithm for extracting smoking status are given in the vignette: Details-on-algorithms-for-extracting-specific-variables.
#' This vignette can be viewed by running \code{vignette("help", package = "rcprd")}.
#'
#' Specifying `db` requires a specific underlying directory structure. The SQLite database must be stored in "data/sql/" relative to the working directory.
#' If the SQLite database is accessed through `db`, the connection will be opened and then closed after the query is complete. The same is true if
#' the database is accessed through `db_filepath`. A connection to the SQLite database can also be opened manually using `RSQLite::dbConnect`, and then
#' using the object as input to parameter `db_open`. After wards, the connection must be closed manually using `RSQLite::dbDisconnect`. If `db_open` is specified, this will take precedence over `db` or `db_filepath`.
#'
#' If `out_save_disk = TRUE`, the data frame will automatically be written to an .rds file in a subdirectory "data/extraction/" of the working directory.
#' This directory structure must be created in advance. `out_subdir` can be used to specify subdirectories within "data/extraction/". These options will use a default naming convetion. This can be overwritten
#' using `out_filepath` to manually specify the location on the hard disk to save. Alternatively, return the data frame into the R workspace using `return_output = TRUE`
#' and then save onto the hard disk manually.
#'
#' Specifying the non-vector type codelists requires a specific underlying directory structure. The codelist on the hard disk must be stored in "codelists/analysis/" relative
#' to the working directory, must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the chosen `tab`. The input
#' to these variables should just be the name of the files (excluding the suffix .csv). The codelists can also be read in manually, and supplied as a
#' character vector. This option will take precedence over the codelists stored on the hard disk if both are specified.
#'
#' We take the most recent smoking status record. If an individuals most recent smoking status is a non-smoker,
#' but they have a history of smoking prior to this, these individuals will be classed as ex-smokers.
#'
#' @returns A data frame with variable smoking status.
#'
#' @examples
#'
#' ## Connect
#' aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))
#'
#' ## Create SQLite database using cprd_extract
#' cprd_extract(aurum_extract,
#' filepath = system.file("aurum_data", package = "rcprd"),
#' filetype = "observation", use_set = FALSE)
#'
#' ## Define cohort and add index date
#' pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
#' pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")
#'
#' ## Extract smoking status prior to index date
#' extract_smoking(cohort = pat,
#' codelist_non_vector = "498521000006119",
#' codelist_ex_vector = "401539014",
#' codelist_light_vector = "128011000000115",
#' codelist_mod_vector = "380389013",
#' codelist_heavy_vector = "13483031000006114",
#' indexdt = "indexdt",
#' db_open = aurum_extract)
#'
#' ## clean up
#' RSQLite::dbDisconnect(aurum_extract)
#' unlink(file.path(tempdir(), "temp.sqlite"))
#'
#' @export
#'
extract_smoking <- function(cohort,
varname = NULL,
codelist_non = NULL,
codelist_ex = NULL,
codelist_light = NULL,
codelist_mod = NULL,
codelist_heavy = NULL,
codelist_non_vector = NULL,
codelist_ex_vector = NULL,
codelist_light_vector = NULL,
codelist_mod_vector = NULL,
codelist_heavy_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE){
# varname = NULL
# codelist_non = "edh_smoking_non_medcodeid"
# codelist_ex = "edh_smoking_ex_medcodeid"
# codelist_light = "edh_smoking_light_medcodeid"
# codelist_mod = "edh_smoking_mod_medcodeid"
# codelist_heavy = "edh_smoking_heavy_medcodeid"
# cohort = cohortZ
# indexdt = "fup_start"
# t = NULL
# db = "aurum_small"
# db_filepath = NULL
# out_save_disk = TRUE
# out_filepath = NULL
# out_subdir = NULL
# return_output = TRUE
### Preparation
## Add index date variable to cohort and change indexdt based on t
cohort <- prep_cohort(cohort, indexdt, t)
## Assign variable name if unspecified
if (is.null(varname)){
varname <- "smoking"
}
## Change variable name based off time point specified for extraction
varname <- prep_varname(varname, t, t_varname)
## Create named subdirectory if it doesn't exist
prep_subdir(out_subdir)
### Run a database query for type 1 and type 2
db.qry.non <- db_query(codelist_non,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_non_vector)
db.qry.ex <- db_query(codelist_ex,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_ex_vector)
db.qry.light <- db_query(codelist_light,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_light_vector)
db.qry.mod <- db_query(codelist_mod,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_mod_vector)
db.qry.heavy <- db_query(codelist_heavy,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = "observation",
codelist_vector = codelist_heavy_vector)
### Combine queries with cohort, retaining all smoking records prior to the index date
### We treat this as test data, because smoking status may be identified through number of cigarettes smoked per day
### We specify value_na_rm = FALSE, as we want to keep the NA values, because smoking status can also be identified through
### the medcodeid itself.
smoking.non <- combine_query(db_query = db.qry.non,
cohort= cohort,
query_type = "test",
numobs = Inf,
value_na_rm = FALSE)
smoking.ex <- combine_query(db_query = db.qry.ex,
cohort = cohort,
query_type = "test",
numobs = Inf,
value_na_rm = FALSE)
smoking.light <- combine_query(db_query = db.qry.light,
cohort = cohort,
query_type = "test",
numobs = Inf,
value_na_rm = FALSE)
smoking.mod <- combine_query(db_query = db.qry.mod,
cohort = cohort,
query_type = "test",
numobs = Inf,
value_na_rm = FALSE)
smoking.heavy <- combine_query(db_query = db.qry.heavy,
cohort = cohort,
query_type = "test",
numobs = Inf,
value_na_rm = FALSE)
### Currently heavy and moderate have no number of cigarettes smoked per day data
### Light smoker has lots of data on this, as the codes actually include "light or not stated"
### Ex smoker contains lots of values, but cannot be used as looks like they are either used to state
### how many a day used to be smoked, or the year at which smoking was given up.
### Non-smoker currently has no values bigger than zero
# sum(!is.na(smoking.heavy$value))
# sum(!is.na(smoking.mod$value))
# sum(!is.na(smoking.light$value))
# sum(!is.na(smoking.non$value) & smoking.non$value > 0)
# sum(!is.na(smoking.ex$value) & smoking.ex$value > 0)
### Add the smoking variable to each dataset
### Assign a smoking value (0 = non, 1 = ex, 2 = light, 3 = moderate, 4 = heavy) to every observation in each query,
### defined solely by the code lists and medical codes
smoking.non$smoking <- 0
smoking.ex$smoking <- 1
smoking.light$smoking <- 2
smoking.mod$smoking <- 3
smoking.heavy$smoking <- 4
### Change smoking depending on the test value for smoking.light, smoking.mod and smoking.heavy
### We set to NA if more than 100
smoking.light <- dplyr::mutate(smoking.light,
smoking = dplyr::case_when(is.na(value) ~ smoking,
value == 0 ~ 0,
value > 0 & value < 10 ~ 2,
value >= 10 & value < 20 ~ 3,
value >= 20 & value <= 100 ~ 4,
value > 100 ~ NA)
)
smoking.mod <- dplyr::mutate(smoking.mod,
smoking = dplyr::case_when(is.na(value) ~ smoking,
value == 0 ~ 0,
value > 0 & value < 10 ~ 2,
value >= 10 & value < 20 ~ 3,
value >= 20 & value <= 100 ~ 4,
value > 100 ~ NA)
)
smoking.heavy <- dplyr::mutate(smoking.heavy,
smoking = dplyr::case_when(is.na(value) ~ smoking,
value == 0 ~ 0,
value > 0 & value < 10 ~ 2,
value >= 10 & value < 20 ~ 3,
value >= 20 & value <= 100 ~ 4,
value > 100 ~ NA)
)
### Remove the NA values
smoking.light <- smoking.light[!is.na(smoking)]
smoking.mod <- smoking.mod[!is.na(smoking)]
smoking.heavy <- smoking.heavy[!is.na(smoking)]
### Only retain the most recent observation for each
smoking.non <- smoking.non |>
dplyr::group_by(patid) |>
dplyr::filter(dplyr::row_number(dplyr::desc(obsdate)) == 1)
smoking.ex <- smoking.ex |>
dplyr::group_by(patid) |>
dplyr::filter(dplyr::row_number(dplyr::desc(obsdate)) == 1)
smoking.light <- smoking.light |>
dplyr::group_by(patid) |>
dplyr::filter(dplyr::row_number(dplyr::desc(obsdate)) == 1)
smoking.mod <- smoking.mod |>
dplyr::group_by(patid) |>
dplyr::filter(dplyr::row_number(dplyr::desc(obsdate)) == 1)
smoking.heavy <- smoking.heavy |>
dplyr::group_by(patid) |>
dplyr::filter(dplyr::row_number(dplyr::desc(obsdate)) == 1)
### Concatenate
variable_dat <- rbind(smoking.non, smoking.ex, smoking.light, smoking.mod, smoking.heavy)
### Arrange so that the first observation is the most recent
### If there are multiple on the same day, we take the most severe smoking status
variable_dat <-variable_dat |>
dplyr::arrange(patid, dplyr::desc(obsdate), dplyr::desc(smoking)) |>
dplyr::group_by(patid)
### Identify those with a smoking history. Given we have only retained one observations from each category,
### this means this individual with > 1 observation must have some sort of smoking history.
smoking.history <- variable_dat |>
dplyr::summarise(count = dplyr::n()) |>
dplyr::filter(count > 1) |>
dplyr::select(patid) |>
dplyr::mutate(smoking.history = 1)
### Reduce variable_dat to most recent observation only
variable_dat <- dplyr::slice(variable_dat, 1)
### If their most recent value is non-smoker and they have a smoking history, we must change non-smoker to ex-smoker.
variable_dat <- merge(variable_dat, smoking.history, all.x = TRUE)
variable_dat <- dplyr::mutate(variable_dat,
smoking = dplyr::case_when(smoking == 0 & !is.na(smoking.history) ~ 1,
TRUE ~ smoking))
### Turn into factor variable
variable_dat$smoking <- factor(variable_dat$smoking,
levels = c(0,1,2,3,4),
labels = c("Non-smoker", "Ex-smoker", "Light", "Moderate", "Heavy"))
### Create dataframe of cohort and the variable of interest
variable_dat <- merge(dplyr::select(cohort, patid), variable_dat, by.x = "patid", by.y = "patid", all.x = TRUE)
### Reduce to variables of interest
variable_dat <- variable_dat[,c("patid", "smoking")]
### Change name of variable to varname
colnames(variable_dat)[colnames(variable_dat) == "smoking"] <- varname
### Implement output
implement_output(variable_dat, varname, out_save_disk, out_subdir, out_filepath, return_output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.