Nothing
#' Extract a 'time until' type variable
#'
#' @description
#' Query an RSQLite database and a data frame with the time until first code of interest or censoring, and an event/censoring indicator.
#'
#' @param cohort Cohort of individuals to extract the variable for.
#' @param varname_time Name of time variable in the outputted data frame.
#' @param varname_indicator Name of event/censoring indicator in the outputted data frame.
#' @param codelist Name of codelist (stored on hard disk) to query the database with.
#' @param codelist_vector Vector of codes to query the database with. This takes precedent over `codelist` if both are specified.
#' @param indexdt Name of variable in `cohort` which specifies the index date. The extracted variable will be calculated relative to this.
#' @param censdt Name of variable in `cohort` which specifies the censoring date.
#' @param censdt_lag Number of days after censoring where events will still be considered, to account for delays in recording.
#' @param t Number of days after \code{indexdt} at which to extract the variable.
#' @param t_varname Whether to alter the variable name in the outputted data frame to reflect `t`.
#' @param db_open An open SQLite database connection created using RSQLite::dbConnect, to be queried.
#' @param db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.
#' @param db_filepath Full filepath to SQLITE database on hard disk, to be queried.
#' @param tab Table name to query in SQLite database.
#' @param out_save_disk If `TRUE` will attempt to save outputted data frame to directory "data/extraction/".
#' @param out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.
#' @param out_filepath Full filepath and filename to save outputted data frame into.
#' @param return_output If `TRUE` will return outputted data frame into R workspace.
#'
#' @details Specifying `db` requires a specific underlying directory structure. The SQLite database must be stored in "data/sql/" relative to the working directory.
#' If the SQLite database is accessed through `db`, the connection will be opened and then closed after the query is complete. The same is true if
#' the database is accessed through `db_filepath`. A connection to the SQLite database can also be opened manually using `RSQLite::dbConnect`, and then
#' using the object as input to parameter `db_open`. After wards, the connection must be closed manually using `RSQLite::dbDisconnect`. If `db_open` is specified, this will take precedence over `db` or `db_filepath`.
#'
#' If `out_save_disk = TRUE`, the data frame will automatically be written to an .rds file in a subdirectory "data/extraction/" of the working directory.
#' This directory structure must be created in advance. `out_subdir` can be used to specify subdirectories within "data/extraction/". These options will use a default naming convetion. This can be overwritten
#' using `out_filepath` to manually specify the location on the hard disk to save. Alternatively, return the data frame into the R workspace using `return_output = TRUE`
#' and then save onto the hard disk manually.
#'
#' Codelists can be specified in two ways. The first is to read the codelist into R as a character vector and then specify through the argument
#' `codelist_vector`. Codelists stored on the hard disk can also be referred to from the `codelist` argument, but require a specific underlying directory structure.
#' The codelist on the hard disk must be stored in a directory called "codelists/analysis/" relative to the working directory. The codelist must be a .csv file, and
#' contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the input for argument `tab`. The input to argument `codelist` should just be a character string of
#' the name of the files (excluding the suffix '.csv'). The `codelist_vector` option will take precedence over the `codelist` argument if both are specified.
#'
#' If the time until event is the same as time until censored, this will be considered an event (var_indicator = 1)
#'
#' If `dtcens.lag > 0`, then the time until the event of interest will be the time until the minimum of the event of interest, and date of censoring.
#'
#' @returns A data frame with variable patid, a variable containing the time until event/censoring, and a variable containing event/censoring indicator.
#'
#' @examples
#'
#' ## Connect
#' aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))
#'
#' ## Create SQLite database using cprd_extract
#' cprd_extract(aurum_extract,
#' filepath = system.file("aurum_data", package = "rcprd"),
#' filetype = "observation", use_set = FALSE)
#'
#' ## Define cohort and add index date and censoring date
#' pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
#' pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")
#' pat$fup_end <- as.Date("01/01/2000", format = "%d/%m/%Y")
#'
#' ## Extract time until event/censoring
#' extract_time_until(pat,
#' codelist_vector = "187341000000114",
#' indexdt = "fup_start",
#' censdt = "fup_end",
#' db_open = aurum_extract,
#' tab = "observation",
#' return_output = TRUE)
#'
#' ## clean up
#' RSQLite::dbDisconnect(aurum_extract)
#' unlink(file.path(tempdir(), "temp.sqlite"))
#'
#' @export
extract_time_until <- function(cohort,
varname_time = NULL,
varname_indicator = NULL,
codelist = NULL,
codelist_vector = NULL,
indexdt,
censdt,
censdt_lag = 0,
t = NULL,
t_varname = TRUE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
tab = c("observation", "drugissue", "hes_primary", "death"),
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = FALSE){
# varname_time = NULL
# varname_indicator = NULL
# codelist = "edh_cvd_hist_medcodeid"
# cohort = cohortZ
# indexdt = "fup_start"
# t = NULL
# db = "aurum_small"
# tab = "obs"
# db_filepath = NULL
# out_save_disk = TRUE
# out_filepath = NULL
# out_subdir = NULL
# return_output = TRUE
# cohort = pat
# varname_time = NULL
# varname_indicator = NULL
# codelist_vector = codelist
# indexdt = "fup_start"
# censdt = "fup_end"
# db_open = aurum_extract3
# tab = "observation"
# return_output = TRUE
# db_filepath = NULL
# out_save_disk = FALSE
# out_filepath = NULL
# out_subdir = NULL
### Preparation
## Add index date variable to cohort and change indexdt based on t
cohort <- prep_cohort(cohort, indexdt, t, reduce = FALSE)
### Change name of censoring date variable to "censdt" so we can easily refer to it
colnames(cohort)[colnames(cohort) == censdt] <- "censdt"
## Reduce cohort to variables of interest
cohort <- cohort[,c("patid", "indexdt", "censdt")]
## Assign variable name if unspecified
if (is.null(varname_time)){
varname_time <- "var_time"
}
if (is.null(varname_indicator)){
varname_indicator <- "var_indicator"
}
## Change variable name based off time point specified for extraction
varname_time <- prep_varname(varname_time, t, t_varname)
varname_indicator <- prep_varname(varname_indicator, t, t_varname)
## Create named subdirectory if it doesn't exist
prep_subdir(out_subdir)
### Run a database query
db.qry <- db_query(codelist,
db_open = db_open,
db = db,
db_filepath = db_filepath,
tab = tab,
codelist_vector = codelist_vector)
### Identify the first CVD event happening after the indexdt
## If tab = "observation", this could be a query_type of "med" or "test", choose "med" as not interested in test results themselves
### Assign query_type
if (tab == "observation"){
query_type <- "med"
} else if (tab == "drugissue"){
query_type <- "drug"
}
## Combine query
## reduce_output = FALSE because we want access to censdt and
variable_dat <- combine_query(db_query = db.qry,
cohort = cohort,
query_type = query_type,
time_prev = 0,
time_post = Inf,
numobs = 1,
value_na_rm = FALSE,
earliest_values = TRUE,
reduce_output = FALSE)
### Calculate the time until event of interest, set to NA and remove if beyond censdt
variable_dat <-
dplyr::mutate(variable_dat,
var_time = dplyr::case_when(obsdate <= censdt + censdt_lag ~ pmin(obsdate, censdt) - as.numeric(indexdt),
obsdate > censdt + censdt_lag ~ NA),
var_indicator = dplyr::case_when(!is.na(var_time) ~ 1,
TRUE ~ NA)) |>
dplyr::filter(!is.na(var_time))
### Reduce to variables of interst
variable_dat <- variable_dat[,c("patid", "var_time", "var_indicator")]
### Merge back with cohort
variable_dat <- merge(dplyr::select(cohort, patid, indexdt, censdt), variable_dat, by.x = "patid", by.y = "patid", all.x = TRUE)
### If the event has NA, set the time to censdt, and indicator to 0
variable_dat <- dplyr::mutate(variable_dat,
var_indicator = dplyr::case_when(!is.na(var_time) ~ var_indicator,
is.na(var_time) ~ 0),
var_time = dplyr::case_when(!is.na(var_time) ~ var_time,
is.na(var_time) ~ as.numeric(censdt - indexdt))
)
### Reduce to variables of interest
variable_dat <- variable_dat[,c("patid", "var_time", "var_indicator")]
### Change name of variable to varname
colnames(variable_dat)[colnames(variable_dat) == "var_time"] <- varname_time
colnames(variable_dat)[colnames(variable_dat) == "var_indicator"] <- varname_indicator
### Implement output
implement_output(variable_dat, varname_time, out_save_disk, out_subdir, out_filepath, return_output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.