Nothing
# __________________ #< 23ce599fd680031f2cba203b7feae4ed ># __________________
# Dim around ####
#' @title Dim values of a dimension based on the distance to an n-dimensional origin
#' @description
#' \Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}
#'
#' Dims the values in the dimming dimension (last by default)
#' based on the data point's distance to the origin.
#'
#' Distance is calculated as:
#' \deqn{d(P1, P2) = sqrt( (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2 + ... )}
#'
#' The default \code{`dimming_fn`} multiplies by the inverse-square of
#' \eqn{1 + distance} and is calculated as:
#' \deqn{dimming_fn(x, d) = x * (1 / (1 + d) ^ 2)}
#'
#' Where \eqn{x} is the value in the dimming dimension. The \eqn{+1} is added
#' to ensure that values are dimmed even when the distance is below \code{1}. The quickest
#' way to change the exponent or the \eqn{+1} is with
#' \code{\link[rearrr:create_dimming_fn]{create_dimming_fn()}}.
#'
#' The origin can be supplied as coordinates or as a function that returns coordinates. The
#' latter can be useful when supplying a grouped \code{data.frame} and dimming around e.g. the centroid
#' of each group.
#'
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @param cols Names of columns in \code{`data`} to calculate distances from.
#' The dimming column (\code{`dim_col`}) is dimmed based on all the columns.
#' Each column is considered a dimension.
#'
#' \strong{N.B.} when the dimming dimension is included in \code{`cols`},
#' it is used in the distance calculation as well.
#' @param dim_col Name of column to dim. Default is the last column in \code{`cols`}.
#'
#' When the \code{`dim_col`} is not present in \code{`cols`}, it is not used in the distance calculation.
#' @param origin Coordinates of the origin to dim around.
#' A scalar to use in all dimensions
#' or a \code{vector} with one scalar per dimension.
#'
#' \strong{N.B.} Ignored when \code{`origin_fn`} is not \code{NULL}.
#' @param dimming_fn \code{Function} for calculating the dimmed values.
#'
#' \strong{Input}: Two (2) input arguments:
#' 1) A \code{numeric vector} with the values in the dimming dimension.
#' 2) A \code{numeric vector} with corresponding distances to the origin.
#'
#' \strong{Output}: A \code{numeric vector} with the same length as the input vectors.
#'
#' E.g.:
#'
#' \code{function(x, d)\{}
#'
#' \verb{ }\code{x * (1 / ((1 + d) ^ 2))}
#'
#' \code{\}}
#'
#' This kind of dimming function can be created with
#' \code{\link[rearrr:create_dimming_fn]{create_dimming_fn()}},
#' which for instance makes it easy to change the exponent (the \code{2} above).
#' @param origin_col_name Name of new column with the origin coordinates. If \code{NULL}, no column is added.
#' @export
#' @return \code{data.frame} (\code{tibble}) with the dimmed column,
#' along with the origin coordinates.
#' @details
#' \itemize{
#' \item Calculates distances to origin with: \deqn{d(P1, P2) = sqrt( (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2 + ... )}
#' \item Applies the \code{`dimming_fn`} to the \code{`dim_col`} based on the distances.
#' }
#' @family mutate functions
#' @family distance functions
#' @inheritParams multi_mutator_
#' @examples
#' # Attach packages
#' library(rearrr)
#' library(dplyr)
#' library(purrr)
#' has_ggplot <- require(ggplot2) # Attach if installed
#'
#' # Set seed
#' set.seed(7)
#'
#' # Create a data frame with clusters
#' df <- generate_clusters(
#' num_rows = 70,
#' num_cols = 3,
#' num_clusters = 5,
#' compactness = 1.6
#' ) %>%
#' dplyr::rename(x = D1, y = D2, z = D3) %>%
#' dplyr::mutate(o = 1)
#'
#' # Dim the values in the z column
#' dim_values(
#' data = df,
#' cols = c("x", "y", "z"),
#' origin = c(0.5, 0.5, 0.5)
#' )
#'
#' # Dim the values in the `o` column (all 1s)
#' # around the centroid
#' dim_values(
#' data = df,
#' cols = c("x", "y"),
#' dim_col = "o",
#' origin_fn = centroid
#' )
#'
#' # Specify dimming_fn
#' # around the centroid
#' dim_values(
#' data = df,
#' cols = c("x", "y"),
#' dim_col = "o",
#' origin_fn = centroid,
#' dimming_fn = function(x, d) {
#' x * 1 / (2^(1 + d))
#' }
#' )
#'
#' #
#' # Dim cluster-wise
#' #
#'
#' # Group-wise dimming
#' df_dimmed <- df %>%
#' dplyr::group_by(.cluster) %>%
#' dim_values(
#' cols = c("x", "y"),
#' dim_col = "o",
#' origin_fn = centroid
#' )
#'
#' # Plot the dimmed data such that the alpha (opacity) is
#' # controlled by the dimming
#' # (Note: This works because the `o` column is 1 for all values)
#' if (has_ggplot){
#' ggplot(
#' data = df_dimmed,
#' aes(x = x, y = y, alpha = o_dimmed, color = .cluster)
#' ) +
#' geom_point() +
#' theme_minimal() +
#' labs(x = "x", y = "y", color = "Cluster", alpha = "o_dimmed")
#' }
dim_values <- function(data,
cols,
dimming_fn = create_dimming_fn(
numerator = 1,
exponent = 2,
add_to_distance = 1
),
origin = NULL,
origin_fn = NULL,
dim_col = tail(cols, 1),
suffix = "_dimmed",
keep_original = TRUE,
origin_col_name = ".origin",
overwrite = FALSE) {
# Check arguments ####
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_string(origin_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_numeric(origin,
min.len = 1,
any.missing = FALSE,
null.ok = TRUE,
add = assert_collection
)
checkmate::assert_function(origin_fn, null.ok = TRUE, add = assert_collection)
checkmate::assert_function(dimming_fn, nargs = 2, add = assert_collection)
checkmate::assert_string(dim_col, min.chars = 1, null.ok = TRUE, add = assert_collection)
checkmate::reportAssertions(assert_collection)
# Check if we will need to overwrite columns
check_unique_colnames_(cols, origin_col_name)
check_overwrite_(data = data, nm = origin_col_name, overwrite = overwrite)
# End of argument checks ####
# Mutate with each multiplier
multi_mutator_(
data = data,
mutate_fn = dim_values_mutator_method_,
check_fn = NULL,
cols = cols,
suffix = suffix,
overwrite = overwrite,
force_df = TRUE,
keep_original = keep_original,
min_dims = 2,
altered_col = dim_col,
dimming_fn = dimming_fn,
origin = origin,
origin_fn = origin_fn,
dim_col = dim_col,
origin_col_name = origin_col_name
)
}
dim_values_mutator_method_ <- function(data,
grp_id,
cols,
overwrite,
dimming_fn,
origin,
origin_fn,
dim_col,
suffix,
origin_col_name,
...) {
# Number of dimensions
# Each column is a dimension
num_dims <- length(cols)
# If cols was originally NULL, dim_col will also be NULL
if (is.null(dim_col)) {
dim_col <- tail(cols, 1)
}
# Convert columns to list of vectors
dim_vectors <- as.list(data[, cols, drop = FALSE])
# Find origin if specified
origin <- apply_coordinate_fn_(
dim_vectors = dim_vectors,
coordinates = origin,
fn = origin_fn,
num_dims = length(cols),
coordinate_name = "origin",
fn_name = "origin_fn",
dim_var_name = "cols",
grp_id = grp_id,
allow_len_one = TRUE
)
# Calculate distances
# formula: sqrt( (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2 )
distances <- calculate_distances_(dim_vectors = dim_vectors, to = origin)
# Apply dimming
dimmed_dimension <- dimming_fn(as.numeric(data[[dim_col]]), distances)
if (length(dimmed_dimension) != length(distances)) {
stop("the output of 'dimming_fn' must have the same length as the input.")
}
# Add or overwrite dimming dimension
dim_vectors[[dim_col]] <- dimmed_dimension
# Add dim_vectors as columns with the suffix
data <-
add_dimensions_(
data = data,
new_vectors = setNames(
list(dim_vectors[[dim_col]]),
dim_col
),
suffix = suffix,
overwrite = overwrite
)
# Add origin coordinates
data <- add_info_col_(
data = data,
nm = origin_col_name,
content = list_coordinates_(origin, cols),
check_overwrite = FALSE # Already checked
)
data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.